Idea

Imagine a particle moving along a curve C . The x - and y-coordinates of the particle are functions of time and so we can write $x=f(t)$ and $y=g(t)$. Such a pair of equations is often a convenient way of describing a curve and gives rise to the following definition.

Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}\right.
$$

(called parametric equations). Each value of t determines a point (x, y), which we can plot in a coordinate plane. As t varies, the point $(x, y)=(f(t), g(t))$ varies and traces out a curve, which we called a parametric curve.

Webwork Problem 13, 17

Sketch and identify the curve defined by the parametric equations $\left\{\begin{array}{l}x=t^{2}-2 t \\ y=t+1\end{array}\right.$ for $-2 \leq t \leq 4$

2
3
4 It appears that the curve traced out by the particle may be a \qquad .
We can confirm this by eliminating the parameter:

$$
y=t+1 \Rightarrow t=y-1
$$

$$
\text { (Plug into } \left.x=t^{2}-2 t\right) \quad x=(y-1)^{2}-2(y-1) \Rightarrow x=y^{2}-4 y+3
$$

Visualize with Desmos: https://www.desmos.com/calculator/zt7cduetlf

Webwork Problem 12, 17
$E \times 2$ Given the graphs of parametric equations $x=f(t)$ and $y=g(t)$, sketch the parametric curve.

Webwork Problem 5, 6, 7, 8 :

Ex 3 The circle $(x-6)^{2}+(y-8)^{2}=25$ is centered at $(6,8)$ and has radius 5.
The circle can be drawn with parametric equations using cosine and sine.
(a) If $x=6+5 \cos (t)$ and if we want to trace the circle once clockwise for $0 \leq t \leq 2 \pi$ starting from the point $(11,8)$, then $\mathrm{y}=$ \qquad
Answer

Method 1 (Unit circle):

$$
\left.\begin{array}{l}
x=6+5 \cos t \\
y=8+5 \sin t
\end{array}\right\} \text { for } 0 \leq t \leq 2 \pi
$$

traces the circle

- $(6,8) \quad \uparrow(6+5,8)$

from $(6+5,8)$ counter clock wise.

To reverse the direction, we can replace t with $-t$

$$
\begin{aligned}
& x=6+5 \cos (-t)=6+5 \cos t \\
& y=8+5 \sin (-t)=8-5 \sin t
\end{aligned}
$$

Answer
Method 2 (algebra): Plug in $\begin{aligned} & x=6+5 \cos t \text { into }(x-6)^{2}+(y-8)^{2}=25 \text { : } \\ & x-6=5 \cos t\end{aligned}$

- use $(\cos t)^{2}=1-(\sin t)^{2}: \quad 25\left(1-(\sin t)^{2}\right)+(y-8)^{2}=25$

$$
\begin{aligned}
& 25-25(\sin t)^{2}+(y-8)^{2}=25 \\
& (y-8)^{2}=25(\sin t)^{2}
\end{aligned}
$$

So $y-8=5 \sin t$ or $y-8=-5 \sin t \leftarrow$ choose this because

$$
y=8+5 \sin t \quad y=8-5 \sin t
$$ the question asks for clockwise

(6,8+5)

- $\begin{gathered}t=\frac{\pi}{2} \\ \substack{t=0 \\(6+5,8)}\end{gathered}$
counterclockwise

$$
\begin{aligned}
& \text { lot: } \\
& \begin{array}{l|l}
t=0 & x=6+5, y=8 \\
\hline t=\frac{\pi}{2} & x=6, y=8+5 \\
\text { clockwise }
\end{array}
\end{aligned}
$$

$$
\begin{array}{l|l}
t=0 & x=6+5, y=8 \\
\hline t=\frac{\pi}{2} & x=6, y=8-5
\end{array}
$$

clockwise

- $t=\frac{\pi}{2}$

Visualize with Desmos: $\underline{\text { https: } / / w w w . d e s m o s . c o m / c a l c u l a t o r / 108 t r p 9 m w d ~} \leqslant C l i c k$ on link

Webwork Problem 5, 6, 7, 8 (con't):

Ex 3 The circle $(x-6)^{2}+(y-8)^{2}=25$ is centered at $\quad(6,8)$ and has radius 5
(b) Write down a pair of parametric equations to describe a path halfway around the same circle counterclockwise starting from the point $(6,13)$.

Answer we can use the original pair of equations

$$
\left.\begin{array}{l}
x=6+5 \cos t \\
y=8+5 \sin t
\end{array}\right\} \quad \text { for } \quad \frac{\pi}{2} \leqslant t \leq \frac{3 \pi}{2}
$$

To make sure the path starts at $(6,13)=(6,8+5)$ the top of the circle start at $t=\frac{\pi}{2}$.

The path goes halfway around, so end at $t=\frac{3 \pi}{2}$.

Visualize with Desmos: https://www.desmos.com/calculator/108trp9mwd

Webwork Problem 5, 6, 7, 8 (con't):

Ex 4
Problem:
Describe the parametric curve

$$
\left.\begin{array}{l}
x=\cos (2 t) \\
y=\sin (2 t)
\end{array}\right\} \quad \text { for } \quad 0 \leq t \leq \pi
$$

Answer The path from $(x, y)=(1,0)$
around the unit circle one full circle
going counterclockwise

