

Equation of a Sphere An equation of a sphere with center C(h, k, l) and radius r is $(x - h)^2 + (y - k)^2 + (z - l)^2 = r^2$

In particular, if the center is the origin O, then an equation of the sphere is

$$x^2 + y^2 + z^2 = r^2$$

Webwork # 6
Find the center and radius of the sphere

$$x^{2} + y^{2} + z^{2} + 4x - 6y + 2z + 6 = 0$$

Answer: $x^{2} + 4x + y^{2} - 6y + z^{2} + 2z = -6$
"Complete squares" $x^{2} + 4x + 2^{2} + y^{2} - 6y + 3^{2} + z^{2} + 2z + 1^{2} = -6 + 4 + 9 + 1$
 $(x + 2)^{2} + (y - 3)^{2} + (z + 1)^{2} = 8$

Comparing this equation with the standard form, we see that it is the equation of a sphere with center (-2, 3, -1) and radius $\sqrt{8} = 2\sqrt{2}$.

12.1 Webwork#4

Consider the sphere $(x-3)^2 + (y-5)^2 + (z-4)^2 = 25$

(a) Does the sphere intersect each of the following planes at zero points, at one point, at two points, in a line, or in a circle?

(b) Does the sphere intersect each of the following coordinate axes at zero points, at one point, at two points, or in a line?

FIGURE 1 Coordinate axes

The sphere intersects the z-axis ?
The z-axis
$$\int_{1}^{2}$$
 is the set of points $(0,0,2)$,
 \int_{2}^{2} any number
Set $x=y=0$: $(-3)^{2} + (-5)^{2} + (z-4)^{2} = 25$
 $(z-4)^{2} = -9$
No z satisfies this equation
The sphere does not intersect the z-axis

12.2

Lecture 12.2 pg7

(1) If
$$\mathbf{a} = \langle 4, 0, 3 \rangle$$
 and $\mathbf{b} = \langle -2, 1, 5 \rangle$,
 $2\mathbf{a} + 5\mathbf{b} = 2\langle 4, 0, 3 \rangle + 5\langle -2, 1, 5 \rangle$
 $= \langle 8, 0, 6 \rangle + \langle -10, 5, 25 \rangle = \langle -2, 5, 31 \rangle$

Webwork#13

Let $\overline{u} = \langle 1, 1 \rangle$, $\overline{v} = \langle 5, -1 \rangle$, and $\overline{w} = \langle -4, 0 \rangle$. Find the vector \overline{x} that satisfies

$$10\overline{u} - \overline{v} + \overline{x} = 8\overline{x} + \overline{w}.$$

$$10\overline{u} - \overline{v} - \overline{w} = 7\overline{x}$$

$$\frac{1}{7}\left(10\overline{u} - \overline{v} - \overline{w}\right) = \overline{x}$$

$$\overline{x} = \frac{1}{7}\left(\left<10.1, 10.1\right> - \left<5, -1\right> - \left<4, 0\right>\right)$$

$$= \frac{1}{7}\left(\left<10 - 5 + 4, 10 + 1\right>\right)$$

$$= \frac{1}{7}\left<\frac{9}{7} 11\right> = \left<\frac{9}{7}, \frac{11}{7}\right>$$

(4) Is the angle between $\langle 2,4\rangle$ and $\langle 3,-1\rangle$ acute, obtuse, or $0,\pi$? Since they are not scalar multiples of each other, the angle between them is between 0 and π (excluding 3π). Since $\langle 2,4\rangle \cdot \langle 3,-1\rangle = 2$ is positive, we must have $0 < \theta < \frac{\pi}{2}$, an acute angle 12.4

() Compute the following $\begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} = |(7) - 3(2)| = 1$ determinant.

2 The following is a sketch of four vectors ũ, v, ũ, Ž Does ux v point in or out of the screen? In Does ux 2 point in or out of the screen? Out Does ux w point in or out of the screen? Neither. UXW is the zero vector, since Trand To are parallel

3 Select the true statement.
a × b = b × a for all vectors
$$\overline{a}$$
, \overline{b} false
 $a × b = -b × a$ for all vectors \overline{a} , \overline{b} True

4 If
$$\vec{v} \times \vec{w} = \vec{D}$$
, that means ...
 \vec{v} and \vec{w} are paralle
 \vec{v} and \vec{w} are perpendicular