12.1

Equation of a Sphere An equation of a sphere with center $C(h, k, l)$ and radius r is

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}
$$

In particular, if the center is the origin O, then an equation of the sphere is

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

Webwork \# 6
Find the center and radius of the sphere

$$
x^{2}+y^{2}+z^{2}+4 x-6 y+2 z+6=0
$$

Answer: $\quad x^{2}+4 x+y^{2}-6 y+z^{2}+2 z=-6$
"Complete squares" $x^{2}+4 x+2^{2}+y^{2}-6 y+3^{2}+z^{2}+2 z+1^{2}=-6+4+9+1$ $(x+2)^{2}+(y-3)^{2}+(z+1)^{2}=8$

Comparing this equation with the standard form, we see that it is the equation of a sphere with center $(-2,3,-1)$ and radius $\sqrt{8}=2 \sqrt{2}$.
12.1 webwork \# 4

Consider the sphere $(x-3)^{2}+(y-5)^{2}+(z-4)^{2}=25$
(a) Does the sphere intersect each of the following planes at zero points, at one point, at two points, in a line, or in a circle?
i. The sphere intersects the yz-plane ?

- $y z$-plane is the collection of points $(0, y, z)$
- Set $x=0:(-3)^{2}+(y-5)^{3}+(z-4)^{2}=25$

$$
\left.(y-5)^{5}+(z-4)^{2}=16\right\} \text { a circle }
$$

The sphere intersects the $y z$-plane
in a circle
ii. The sphere intersects the xz-plane ?

Answer: The $x z$-plane is the set of points $(x, 0,2)$ for any x, z.

$$
\text { Set: }(x-3)^{2}+(-5)^{2}+(2-4)^{2}=25
$$

$$
(x-3)^{2}+(2-4)^{2}=0
$$

This equation is satisfied for $x=3, z=4$
So the sphere intersects the $x z$-plane at exactly pone point.
(b) Does the sphere intersect each of the following coordinate axes at zero points, at one point, at two points, or in a line?

The sphere intersects the z -axis ?

The 2 -axis
is the set of points $(0,0,2)$,
z any number

Set $x=y=0:(-3)^{2}+(-5)^{2}+(z-4)^{2}=25$

$$
(z-4)^{2}=-9
$$

No z satisfies this equation
The sphere does not intersect the z-axis
12.2
(1)

$$
\begin{aligned}
& \text { If } \mathbf{a}=\langle 4,0,3\rangle \text { and } \mathbf{b}=\langle-2,1,5\rangle \\
& \begin{aligned}
2 \mathbf{a}+5 \mathbf{b} & =2\langle 4,0,3\rangle+5\langle-2,1,5\rangle \\
& =\langle 8,0,6\rangle+\langle-10,5,25\rangle=\langle-2,5,31\rangle
\end{aligned}
\end{aligned}
$$

(2) Find a vector with representation given by $\overrightarrow{C D}$

Webwork \#13
Let $\bar{u}=\langle 1,1\rangle, \bar{v}=\langle 5,-1\rangle$, and $\bar{w}=\langle-4,0\rangle$. Find the vector \bar{x} that satisfies

$$
\begin{aligned}
& 10 \vec{u}-\vec{v}-\vec{w}=7 \vec{x} \\
& \frac{1}{7}(10 \vec{u}-\vec{v}-\vec{w})=\vec{x}+\bar{x}=8 \bar{x}+\bar{w} . \\
& \vec{x}=\frac{1}{7}(\langle 10.1,10.1\rangle-\langle 5,-1\rangle-\langle-4,0\rangle) \\
&=\frac{1}{7}(\langle 10-5+4,10+1\rangle) \\
&=\frac{1}{7}\langle 9,11\rangle=\left\langle\frac{9}{7}, \frac{11}{7}\right\rangle
\end{aligned}
$$

12.3
(1)

$$
\begin{aligned}
&\langle 2,4\rangle \cdot\langle 3,-1\rangle= \\
& 2(3)+4(-1)=2 \\
&\langle-1,7,4\rangle \cdot\left\langle 6,2,-\frac{1}{2}\right\rangle= \\
&(-1)(6)+7(2)+4\left(-\frac{1}{2}\right)=6
\end{aligned}
$$

(2) 3 Theorem If θ is the angle between the vectors \mathbf{a} and \mathbf{b}, then

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta
$$

positive when $\quad 0 \leqslant \theta<\frac{\pi}{2}$
$\cos (\theta)$ is \ldots
. 0 when

$$
\text { negative when } \quad \frac{\pi}{2}<\theta \leqslant \pi
$$

(3)

So we can determine acute/right/obtuse angle by computing $\vec{a} \cdot \vec{b}$

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}>0 \\
& \theta \text { acute }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=0 \\
& \theta=\pi / 2
\end{aligned}
$$

$$
\mathbf{a} \cdot \mathbf{b}<0
$$

θ obtuse

Two vectors \vec{a}, \vec{b} are or thogonal or perpendicular if $\vec{a} \cdot \vec{b}=0$
(4) Is the angle between $\langle 2,4\rangle$ and $\langle 3,-1\rangle$ acute, obtuse, or $0, \pi$?

Since they are not scalar multiples of each other, the angle between them is between 0 and π (excluding $0, \pi$). Since $\langle 2,4\rangle \cdot\langle 3,-1\rangle=2$ is positive, we must have $0<\theta<\frac{\pi}{2}$, a_{n} acute angle
12.4
(1) Compute the following determinant.

$$
\left|\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right|=1(7)-3(2)=1
$$

(2)

The following is a sketch of four vectors $\vec{u}, \vec{v}, \vec{\omega}, \vec{z}$.

Does $\vec{u} \times \vec{v}$ point in or out of the screen? In Does $\vec{u} \times \vec{z}$ point in or out of the screen? Out Does $\vec{u} \times \vec{w}$ point in or out of the screen?

Neither. $\vec{u} \times \vec{\omega}$ is the zero vector, since \vec{u} and \vec{w} are parallel
(3) Select the true statement.
$\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$ for all vectors \vec{a}, \vec{b} True
(4) If $\vec{v} \times \vec{w}=\overrightarrow{0}$, that means...
(1) \vec{v} and \vec{w} are parallel|
\vec{v} and $\vec{\omega}$ are perpendicular

