10.1 (Webwork #14)
Eliminate the parameter to express

$$x = e^{3t}$$
 in the form $y = f(x)$
 $y = \frac{1}{e^{6t}}$ $y = \frac{1}{(e^{3t})^2} = \frac{1}{x^2}$ Ans: $y = \frac{1}{x^2}$

Similar Webwork practice : # 15, 16, 17, 18, 20 Webwork Sketching Parametric curve : # 10,12

10.2 (Webwork # 10) Useful fact:
$$\frac{d^2y}{dx^2} = \left[\frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\left[\frac{dx}{dt}\right]}\right]$$

Suppose h(t) and k(t) are differentiable functions of t. Consider the parametric curve

 $\left\{\begin{array}{l} x=h(t)\\ y=k(t) \end{array}\right., \text{ where } y \text{ is also a differentiable function of } x.$

Suppose you have computed
$$\frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{-b}{(t^2-q)^2}$$
 and $\frac{dx}{dt} = 3t^2 - 12$
List the t-interval where the curve is concave upward.
Answer:
2 < t < ?

The curve is concave up when $\frac{d^2y}{dx^2}$ is defined and is a positive number.

$$\frac{d^{2}y}{dx^{2}} = \left[\frac{d}{dt}\left(\frac{dy}{dx}\right)\right] = \left[\frac{-6}{\left(\frac{t^{2}}{t^{2}}-\theta^{2}\right)}\right] = -\frac{6}{3}\frac{1}{\left(t^{2}-4\right)\left(t^{2}-4\right)^{2}} = -\frac{2}{\left(t^{2}-4\right)^{3}}$$

 $\frac{d^2 y}{dx^2} \quad \text{is positive when } \left(\frac{t^2 - 4}{t^2 - 4}\right)^3 < 0$ $\iff t^2 - 4 < 0$ $\iff t^2 < 4$ Answer -2 < t < 2

Similar Webwork Practice: #8,9,10,12

10.3

(

Determine the polar coordinates of the two points at which the polar curves $r = 7\sin(\theta)$ and $r = 7\cos(\theta)$ intersect. Restrict your answers to $r \ge 0$ and $0 \le \theta < 2\pi$.

To input answers, list the two points in order of increasing values of r. If both points have the same value of r, list them in order of increasing values of θ . If one of the intersection points is the pole, type "pole" in lower-case letters in both blanks for the first point.

Intersection point 1:
$$(r, \theta) = (\frac{pole}{2}, \frac{pole}{2})$$

Intersection point 2: $(r, \theta) = (\frac{7\sqrt{2}}{2}, \frac{\pi}{4})$
Set 7 sin $\theta = 7 \cos \theta = p \quad \theta = \frac{\pi}{4}$ and $r = 7 \cos \frac{\pi}{4} = 7 \frac{\sqrt{2}}{2}$
Also when $r = 0$, the pole

.

Consider the curves
$$\gamma = 4$$
 and $\gamma \cos \theta = 4$.
At how many points do they intersect? Ans: 1
At what point/s do they intersect? Ans: $(r=4, \theta=0)$
 $r=4$ is the circle with radius 4 centered at the origin.
 $r\cos\theta=4$ is equivalent to the Cartesian equation $x=4$,
which describes the vertical line through the point ($x=4, g=0$)
So the only intersection point is at ($x=4, g=0$)
(equivalently, at ($r=4, \theta=0$) in polar coordinates)

3 Consider the curves
$$\beta = \frac{\pi}{6}$$
 and $(x-4)^2 + (y+2)^2 = 1$.
At how many points do they intersect? Ans: 0
At what point/s do they intersect? N/A
 $\beta = \frac{\pi}{6}$ is the line through the origin that makes an angle $\frac{\pi}{6}$
with the positive x-axis.
 $(x-4)^2 + (y+2)^2 = 1$ is the circle with radius 1 centered at $(4, -2)$.
This circle is in the 4th quadrant, so
there are no intersection points.
 $\beta = \frac{\pi}{6}$

10.4

See Quiz 6 Study Guide