Sec 11.4 Review pg 1
(1)

Memorize the statement of the Limit Comparison Test (for when $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ is a positive number)
(2)

For $a_{n}=\frac{7}{5^{n}-2}$, find a sequence b_{n} so that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ is a positive (finite) number
Then apply the Limit Comparison Test to $\sum_{n=1}^{\infty} a_{n}$.
Answer

- Since a_{n} looks like $\frac{1}{5^{n}}$ and $\sum_{n=1}^{\infty}\left(\frac{1}{5}\right)^{n}$ is a geometric series, try $b_{n}:=\frac{1}{5^{n}}$.
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{7}{5^{n}-1} \cdot 5^{n}=\lim _{n \rightarrow \infty} \frac{7 \ln (5) 5^{n}}{\ln (5) 5^{n}}=7$
- Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=7$ is a positive number, either both $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge or both diverge.
- We know $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty}\left(\frac{1}{5}\right)^{n}$ converges (since it's a geometric series with ratio $\frac{1}{5}($ living in $(-1,1))$, so $\sum_{n=1}^{\infty} a_{n}$ also converges.

Sec 11.4 Review pg 2
(3) Use the Limit Comparison Test to test $\sum_{n=2}^{\infty} \frac{n}{\sqrt{n^{8}-6}}$ for convergence/divergence.

Answer
Let $a_{n}:=\frac{n}{\sqrt{n^{2}-6}}$.
Try $b_{n}:=\frac{n}{\sqrt{n^{8}}}=\frac{n}{n^{\frac{8}{2}}}=\frac{n}{n^{4}}=\frac{1}{n^{3}}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{8}+6}} \cdot n^{3}=\lim _{n \rightarrow \infty} \frac{n^{4}}{\sqrt{n^{8}+6}}=\lim _{n \rightarrow \infty} \frac{\left(\frac{n^{4}}{n^{4}}\right)}{\sqrt{\frac{n^{8}}{n^{8}}+\frac{6}{n^{8}}}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{6}{n^{8}}}}=1
$$

Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$, a positive number,
the Limit Comparison Test says that either
($\sum_{n=2}^{\infty} a_{n}$ and $\sum_{n=2}^{\infty} b_{n}$ both converge) or ($\sum_{n=2}^{\infty} a_{n}$ and $\sum_{n=2}^{\infty} b_{n}$ both diverge).
Since $\sum_{n=2}^{\infty} b_{n}=\sum_{n=2}^{\infty} \frac{1}{n^{3}}$ is a convergent p-series (due to $p=3>1$), $\sum_{n=2}^{\infty} a_{n}$ also converges.

Sec 11.4 Review pg 3
(4) Using the Limit Comparison Test, determine if the series $\sum_{n=1}^{\infty} \frac{n^{4}-2 n^{2}+3}{2 n^{6}-n+5}$ converges.

Answer
Step 0 (Brainstorm).

- Dominant term of the top function: $\quad n^{4} \quad$ or $n^{6} \quad \frac{n^{4}}{n^{6}}=\frac{1}{n^{2}}$
- So, try comparing this series with a p -series $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ where $\mathrm{p}=2$

Step 1. Let $a_{n}=\frac{n^{4}-2 n^{2}+3}{2 n^{6}-n+5}, \quad b_{n}=\frac{1}{n^{2}}$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{4}-2 n^{2}+3}{2 n^{6}-n+5} \cdot \frac{n^{2}}{1}=\lim _{n \rightarrow \infty} \frac{n^{6}-2 n^{4}+3 n^{2}}{2 n^{6}-n+5}=\lim _{n \rightarrow \infty} \frac{n^{6}}{2 n^{6}}=\frac{1}{2}>0
$$

Step 2. Since $\xlongequal{\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \text { is positive }}$, the series $\sum_{n=1}^{\infty} \frac{n^{4}-2 n^{2}+3}{2 n^{6}-n+5}$ converges by the Limit Comparison Test (since $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a convergent p-series)
(5) Is $\sum_{n=1} \frac{\sqrt{n+1}}{n}$ convergent or divergent?

Answer
Let $a_{n}=\frac{\sqrt{n+1}}{n} . \quad \operatorname{Try} b_{n}=\frac{\sqrt{n}}{n}=\frac{1}{\sqrt{n}}$
(i) $a_{n}=\frac{\sqrt{n+1}}{n} \geqslant \frac{\sqrt{n}}{n}=b_{n} \quad$ for all $n=1,2,3, \ldots$
(ii) $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ is a divergent p-series $\left(p=\frac{1}{2} \leqslant 1\right)$

So $\sum_{n=1}^{\infty} a_{n}$ diverges by the Comparison Test.

Sec ll. 4 Review

(6) Test the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}-1}$ for convergence or divergence.
sOLUTION We use the Limit Comparison Test with

$$
a_{n}=\frac{1}{2^{n}-1} \quad b_{n}=\frac{1}{2^{n}}
$$

and obtain

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1 /\left(2^{n}-1\right)}{1 / 2^{n}}=\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n}-1}=\lim _{n \rightarrow \infty} \frac{1}{1-1 / 2^{n}}=1>0
$$

(7) Determine whether the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$ converges or diverges.

SOLUTION The dominant part of the numerator is $2 n^{2}$ and the dominant part of the denominator is $\sqrt{n^{5}}=n^{5 / 2}$. This suggests taking

$$
\begin{aligned}
a_{n} & =\frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}} \quad b_{n}=\frac{n^{2}}{n^{5 / 2}}=\frac{1}{n^{1 / 2}} \\
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}} \cdot n^{1 / 2}=\lim _{n \rightarrow \infty} \frac{2 n^{5 / 2}+3 n^{3 / 2}}{\sqrt{5+n^{5}}} \\
& =\lim _{n \rightarrow \infty} \frac{2+\frac{3}{n}}{\sqrt{\frac{5}{n^{5}}+1}}=\frac{2+0}{\sqrt{0+1}}=2>0
\end{aligned}
$$

Since $\Sigma b_{n}=2 \Sigma 1 / n^{1 / 2}$ is divergent (p-series with $p=\frac{1}{2}<1$), the given series diverges by the Limit Comparison Test.

Sec II. 5 Review Pg 1

Memorize the statement of the Alternating Series Test pg 772

Determine if the following series converge or diverge, with justification.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ (Copy solution from Example 1, pg 774)
(b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+1} \quad$ (Copy solution from Example 3, pg 774)
(c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{3 n}{4 n-1}$ (Copy solution from Example 2, pg 774)

Sec 11.5 Review $p g 2$
(d)

Determine whether the series $\sum_{n=1}^{\infty} \frac{-n^{2} \cos (n \pi)}{n^{3}+1}$ converges/diverges.
Answer: Since $\cos (n \pi)=\left\{\begin{aligned} 1 & \text { if } n \text { is even } \\ -1 & \text { if } n \text { is odd }\end{aligned}\right.$
we have $\cos (n \pi)=(-1)^{n}$ for all integers n So the series is $\sum_{n=1}^{\infty} \frac{-n^{2}(-1)^{n}}{n^{3}+1}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+1}$

This is the series from Textbook Example 3, pg 774. Copy the textbook's solution.
(e)

Determine whether the series $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{-n}$ converges/diverges.
Answer: Since $\cos (n \pi)=\left\{\begin{aligned} 1 & \text { if } n \text { is even } \\ -1 & \text { if } n \text { is odd }\end{aligned}\right.$
we have $\cos (n \pi)=(-1)^{n}$ for all integers n So the series is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{-n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$

This is the series from Textbook Example 1, pg 774. Copy the textbook's solution.
f is $\sum_{n=2}^{\infty} \frac{(\sqrt{n}-1) \cos (n \pi)}{\sqrt{n^{2}-3}}$ an alternating series?
Answer Yes, the series is $\sum_{n=2}^{\infty} \frac{(\sqrt{n}-1)}{\sqrt{n^{2}-3}}(-1)^{n}$ and $\frac{\sqrt{n}-1}{\sqrt{n^{2}-3}}>0$ for all $n \geqslant 2$.

Sec 11.6 Review pg 2
1.)

Memorize the statement of the Ratio Test pg 779
Determine whether each of the following is conditionally convergent, absolutely convergent, or divergent.
2.)
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \quad \frac{\text { Answer }}{\infty}$

- $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}$ converges by Alternating Series Test since $\frac{1}{n^{2}}$ is decreasing for all $n=1,2,3, \ldots$ and $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$.
- $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n+1}}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a convergent p-series $(p=2)$, So we say $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$ converges absolutely.
3.)
$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ • since (i) $\left\{\frac{1}{\sqrt{n}}\right\}_{n=1}^{\infty}$ is decreasing
(ii) $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$,
the series converges by Alternating Series Test.
- But $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n+1}}{\sqrt{n}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ is a divergent p-series $\left(p=\frac{1}{2}\right)$ So we say $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ is conditionally convergent.

Sec 11.6 Review pg 3
Determine whether each of the following is conditionally convergent, absolutely convergent, or divergent.
4.) $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$

Solution

- $\sum \frac{\sin n}{n^{2}}$ has both positive and negative terms, but $\sum \frac{\sin n}{n^{2}}$ is not an alternating Series (so Alternating Series Test doesn't apply).
- (We can apply comparison Test to $\sum\left|\frac{\sin n}{n^{2}}\right|$ with $\sum \frac{1}{n^{2}}$)
- Let $a_{n}:=\frac{|\sin n|}{n^{2}}$ and $b_{n}:=\frac{1}{n^{2}}$
- Since $0_{0} \leq a_{n} \leq b_{n}$ for all $n=1,2,3, \ldots$ and
(ii) $\sum b_{n}$ is a convergent p-series $(p=2)$,
$\sum\left|\frac{\sin n}{n^{2}}\right|$ also converges by the Comparison Test.
- By def, $\sum \frac{\sin n}{n^{2}}$ absolutely converges.
- (meaning $\sum \frac{\sin n}{n^{2}}$ converges and $\sum\left|\frac{\sin n}{n^{2}}\right|$ converges).
5.) $\sum_{k=1}^{\infty} \frac{10^{k}}{k!} \quad$ Answer,$\frac{a_{k+1}}{a_{k}}=\frac{\left(\frac{10^{k+1}}{(k+1)!}\right)}{\left(\frac{10^{k}}{k!}\right)}=\frac{10^{k+1}}{(k+1)!} \cdot \frac{k!}{10^{k}}=\frac{10}{k+1}$
- $\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty} \frac{10}{k+1}=0$
- $\sum_{k=1}^{\infty} \frac{10^{k}}{k!}$ is absolutely convergent
by the Ratio Test, since $\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=0<1$.
WEB WORK PROBLEM $1,2,7,8,11,12$

Sec 11.6 Review pg 4
Determine whether each of the following is conditionally convergent, absolutely convergent, or divergent.
6.) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}$ SOLUTION We use the Ratio Test with $a_{n}=(-1)^{n} n^{3} / 3^{n}$:

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\left|\frac{\frac{(-1)^{n+1}(n+1)^{3}}{3^{n+1}}}{\frac{(-1)^{n} n^{3}}{3^{n}}}\right|=\frac{(n+1)^{3}}{3^{n+1}} \cdot \frac{3^{n}}{n^{3}} \\
& =\frac{1}{3}\left(\frac{n+1}{n}\right)^{3}=\frac{1}{3}\left(1+\frac{1}{n}\right)^{3} \rightarrow \frac{1}{3}<1
\end{aligned}
$$

Thus, by the Ratio Test, the given series is absolutely convergent.
7.) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$.

SOLUTION Since the terms $a_{n}=n^{n} / n$! are positive, we don't need the absolute value signs.

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{n^{n}}=\frac{(n+1)(n+1)^{n}}{(n+1) n!} \cdot \frac{n!}{n^{n}} \\
&=\left(\frac{n+1}{n}\right)^{n}=\left(1+\frac{1}{n}\right)^{n} \rightarrow e \quad \text { as } n \rightarrow \infty \quad \text { See Exam } 1 \text { sol } \\
& \text { for Sec } 6.8 \\
& \text { rHospital's }
\end{aligned}
$$ Since $e>1$, the given series is divergent by the Ratio

Test. Exam 1 solution for $\sec 6.8$ question

Sec II. 7 Review pg 1
For each of the following series, determine whether the ratio test will work for testing Convergence / divergence.
(1) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{\left(n^{2}+4\right)}$

O The ratio test can be used
O The ratio test will be inconclusive
(2) $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n^{5}}$

O The ratio test can be used
O The ratio test will be inconclusive
(3) $\sum_{n=1}^{\infty} \frac{\ln (\pi n)+6 \sqrt{n}}{n^{2}}$

O The ratio test can be used
O The ratio test will be inconclusive
(4) $\sum_{n=1}^{\infty} \frac{n!}{(n+1)!2}$

O The ratio test can be used
O The ratio test will be inconclusive
(5) $\quad \sum^{\left(-\frac{2 n}{3^{n}} \frac{\ln n}{\left(n^{2}+4\right)}\right.}$
(6) $\sum \frac{\sqrt{n}+1}{n!}(-1)^{n}$

O The ratio test can be used
O The ratio test will be inconclusive
(7) $\sum_{n=2}^{\infty} \frac{6}{n \sqrt{n^{7}-2}}$

O The ratio test can be used
O The ratio test will be inconclusive

Sec II. 7 Review pg 2
Key points from textbook pg 784-785
(8)

Q: When will Ratio Test be inconclusive?
A: If the terms of the series involve n^{p} and $\ln (n)$ only e.g $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{\left(n^{2}+4\right)}$ or $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n^{5}}$ or $\sum_{n=1}^{\infty} \frac{\ln (\pi n)+6 \sqrt{n}}{n^{2}}$
(9)

- Q: When is Ratio Test likely to work?

A: If the terms involve factorial, geometric sequence, n^{n} e.g $\sum\left(-\frac{2^{n}}{3^{n}} \frac{\ln n}{\left(n^{2}+4\right)}\right.$ or $\sum \frac{\sqrt{n}+1}{n!}(-1)^{n}$
(10)

- Q: When can Limit Comparison Test work?

A: Series with only positive (or 0) terms e.g $\sum_{n=1} \frac{\ln (\pi n)+6 \sqrt{n}}{n^{2}}$ or $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}} \frac{\ln n}{\left(n^{2}+4\right)}$ or $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n^{5}-1}$ or $\sum_{n=2}^{\infty} \frac{6}{n \sqrt{n^{7}-2}}$

WEBWORK PROBLEM 1
WEBWORK PROBLEM 4

Sec 11.8 Review pg 1
Q: What theorem should you use to find the radius of convergence of a power series? A: Ratio Test

Q: What tests should you use to check whether $x=a+R$ and $x=a-R$ (where a is the center of the power series and R is the radius) are in the interval of convergence?

A: p-series; geometric series; Alternating Series Test; Limit Comparison Test. (There are others, but you dort need other ways on this exam).

Q: If $\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}(x-10)^{n+1}}{C_{n}(x-10)^{n}}\right|=\left|\frac{x-10}{99}\right|$, what is the radius of convergence for $\sum_{n=1}^{\infty} c_{n}(x-10)^{n}=c_{1}(x-10)+c_{2}(x-10)^{2}+c_{3}(x-10)^{3}+\ldots$? What about interval of convergence?

A: $\sum_{n=1}^{\infty} c_{n}(x-10)^{n}$ converges when $\left|\frac{x-10}{99}\right|<1 \Leftrightarrow|x-10|<99$, so the radius of convergence is 99 .
The interval of convergence includes $(10-99,10+99)$, but we dort have enough information to determine if -89 and 109 are in the interval.

WEBWORK PROBLEM 2,6,9,10

Sec 11.8 Review pg 2
Find the radius of convergence and interval of convergence for each series.

1. $\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{5^{n}}=1+\frac{x+2}{5}+\frac{(x+2)^{2}}{25}+\ldots \quad$ Answer:
$\sum_{n=0}^{\infty}\left(\frac{x+2}{5}\right)^{n}$ is a geometric series with ratio $\frac{x+2}{5}$
So the series converges iff $\left|\frac{x+2}{5}\right|<1 \Longleftrightarrow|x+2|<5$

$$
\begin{aligned}
-5 & <x+2 \\
-5-2 & <x<5 \\
-7 & <x<3
\end{aligned}
$$

Interval of convergence is $(-7,3)$
Radius of convergence is $R=5$
2. $\sum_{n=0}^{\infty} 9^{n}(x-2)^{2 n}$

Answer

$$
\text { - } \sum_{n=0}^{\infty} q^{n}(x-2)^{2 n}=\sum_{n=0}^{\infty}\left[9(x-2)^{2}\right]^{n}
$$

- This is a geometric series with ratio $q(x-2)^{2}$.
- So it converges if and only if $\left|9(x-2)^{2}\right|<1$

$$
\begin{aligned}
\left|(x-2)^{2}\right| & <\frac{1}{9} \\
|x-2| & <\frac{1}{3} \\
-\frac{1}{3}<x-2 & <\frac{1}{3} \\
2-\frac{1}{3}<x \quad & <2+\frac{1}{3}
\end{aligned}
$$

Interval of convergence is $\left(1 \frac{2}{3}, 2 \frac{1}{3}\right)$.
Radius of convergence is $\frac{1}{3}$.

Sec 11.8 Review pg 3
Find the radius of convergence and interval of convergence for $\sum_{n=1}^{\infty} \frac{5^{n}(x-4)^{n}}{\sqrt{n}}$
Answer

- Let $a_{n}=\frac{5^{n}(x-4)^{n}}{\sqrt{n}}$

$$
\text { - } \begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{5^{n+1}(x-4)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{5^{n}(x-4)^{n}} \\
& =5 \frac{\sqrt{n}}{\sqrt{n+1}}(x-4)
\end{aligned}
$$

- $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{5 \sqrt{n}}{\sqrt{n+1}}(x-4)\right|$

$$
\begin{aligned}
& =|5(x-4)| \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}} \\
& =|5(x-4)| \cdot 1
\end{aligned}
$$

- By Ratio Test, $\sum a_{n}$ converges when $|5(x-4)|<1$

$$
\begin{array}{r}
|x-4|<\frac{1}{5} \\
-\frac{1}{5}<x-4<\frac{1}{5}
\end{array}
$$

- So the radius of convergence is $\frac{1}{5}$
- What is the interval of convergence I?

We know I must include $\left(4-\frac{1}{5}, 4+\frac{1}{5}\right)$
Check $x=4-\frac{1}{5}: \sum^{\infty} \frac{5^{n}\left(-\frac{1}{5}\right)^{n}}{\sqrt{n}}=\sum^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges by Alternating Series Test (so I includes $x=4-\frac{1}{5}$)
Check $x=4+\frac{1}{5}: \sum_{n=1}^{\infty} \frac{5^{n}\left(\frac{1}{5}\right)^{n}}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a divergent p-series $\left(p=\frac{1}{2}\right)$
(So I does not include $x=4+\frac{1}{5}$)
$I=\left[4-\frac{1}{5}, 4+\frac{1}{5}\right]$ is the interval of convergence

Sec ll. 8 Review pg 4
Find the radius of convergence and interval of convergence for each series.
4. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \frac{\text { Answer }}{n \text { Use Ratio Test: }}$

- Let $a_{n}=\frac{x^{n}}{n!}$
- $\frac{a_{n+1}}{a_{n}}=\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}=\frac{1}{n+1} \cdot x$
- $\lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{n+1}\right|=|x| \lim _{n \rightarrow \infty} \frac{1}{n+1}=0<1 \quad$ for any number x
- So by Ratio Test, $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges for all x.

Interval of convergence is $(-\infty, \infty)$
Radius of convergence is ∞.
Answer
5. $\sum_{n=0}^{\infty} n!(x+8)^{n}$ Use Ratio Test:

- Let $a_{n}=n!(x+8)^{n}$
- $\frac{a_{n+1}}{a_{n}}=\frac{(n+1)!(x+8)^{n+1}}{n!(x+8)^{n}}$

$$
=(n+1)(x+8)
$$

- $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}|(n+1)(x+8)|=|x+8| \lim _{n \rightarrow \infty}(n+1)= \begin{cases}\infty & \text { if } x \neq-8 \\ 0 & \text { if } x=-8\end{cases}$
- The series converges if and only if $x=-8$

Interval of convergence is $\{-8\}=[-8,-8]$ Radius of convergence is 0 .

Sec 11.8 Review pg 5

6.

Suppose that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-3$ and diverges when $x=4$.
Determine whether the following series converge or diverge.

1. $\sum_{n=1}^{\infty} c_{n}$
2. $\sum_{n=1}^{\infty} c_{n} 9^{n}$
3. $\sum_{n=1}^{\infty} c_{n}(-2)^{n}$
4. $\sum_{n=1}^{\infty}(-1)^{n} c_{n} 12^{n}$

Solution

Since the center of this power series is O, this means the radius of convergence, R, is between 3 and 4 (possibly 3 or 4).

1. $\sum_{n=1}^{\infty} c_{n}=\sum_{n=1}^{\infty} c_{n}(1)^{n} \quad \begin{aligned} & \text { Distance between center and } x=1 \text { is } 1<3 \\ & \Rightarrow \text { the series converges }\end{aligned}$
2. $\sum_{n=1}^{\infty} c_{n} 9^{n} \quad$ Distance between center (0) and $x=9$ is $9>4$ \Rightarrow the series diverges
3. $\sum_{n=1}^{\infty} c_{n}(-2)^{n} \quad \begin{aligned} & \text { Distance between center }(0) \text { and } x=-2 \text { is } 2<3 \\ & \Rightarrow \text { the series converges }\end{aligned}$
4. $\sum_{n=1}^{\infty}(-1)^{n} c_{n} 12^{n}=\sum_{n=1}^{\infty} c_{n}(-12)^{n} \quad \begin{aligned} & \text { Distance between center }(0) \text { and } x=-12 \text { is } 12>4\end{aligned}$

Sec 11.9 Review pg 1
(1) Find a power series representation for $f(x)=\frac{5}{1+4 x^{2}}$ and find its interval
of convergence.

Answer

$$
\begin{aligned}
\frac{5}{1+4 x^{2}} & =5 \frac{1}{1-\left(-4 x^{2}\right)} \\
& =5 \sum_{n=0}^{\infty}\left(-4 x^{2}\right)^{n} \\
& =5 \sum_{n=0}^{\infty}(-1)^{n} 4^{n} x^{2 n}
\end{aligned}
$$

$$
\text { if }\left|-4 x^{2}\right|<1 \Leftrightarrow\left|x^{2}\right|<\frac{1}{4}
$$

$$
\Leftrightarrow \quad|\times|<\frac{1}{\substack{\text { radius of } \\ \text { Sanergence }}}
$$

Interval of convergence: $\left(-\frac{1}{2}, \frac{1}{2}\right)$

Find a power series representation for $f(x)=\frac{2 x^{4}}{2-3 x}$ and find its interval of
convergence.
Answer

$$
\begin{aligned}
\frac{\frac{1}{2} 2 x^{4}}{\frac{1}{2}(2-3 x)} & =\frac{x^{4}}{1-\frac{3}{2} x} \\
& =x^{4} \frac{1}{1-\left(\frac{3}{2} x\right)} \\
& =x^{4} \sum_{n=0}^{\infty}\left(\frac{3}{2} x\right)^{n} \quad \text { if }\left|\frac{3}{2} x\right|<1 \Leftrightarrow|x|<\left(\frac{2}{3}\right) \\
& =x^{4} \sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n} x^{4+n}
\end{aligned}
$$

Interval of convergence: $\left(-\frac{2}{3}, \frac{2}{3}\right)$

Sec 11.9 Review $\operatorname{pg} 2$
(3) Find a power series representation (centered at 0) for $f(x)=\frac{1}{(5+x)^{2}}$.

Answer
Step 0

$$
\begin{aligned}
& \frac{d}{d x}\left[\frac{1}{(5+x)}\right]=-\frac{1}{(5+x)^{2}} \\
& \frac{d}{d x}\left[-\frac{1}{5+x}\right]=\frac{1}{(5+x)^{2}}
\end{aligned}
$$

Step 1

$$
\begin{aligned}
-\frac{1}{5+x} & =-\frac{\frac{1}{5}}{\frac{1}{5}(5+x)} \\
& =-\frac{1}{5} \frac{1}{1-\left(\frac{x}{5}\right)} \\
& =-\frac{1}{5} \sum_{n=0}^{\infty}\left(-\frac{x}{5}\right)^{n} \quad \text { for }\left|-\frac{x}{5}\right|<1 \Leftrightarrow|x|<5 \quad \text { Radius of convergence: } 5 \\
& =-\frac{1}{5} \sum_{n=0}^{\infty}\left(-\frac{1}{5}\right)^{n} x^{n} \\
& =\sum_{n=0}^{\infty}\left(-\frac{1}{5}\right)^{n+1} x^{n}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\text { Step } 2}{\frac{1}{(5+x)^{2}}} & =\frac{d}{d x}\left[-\frac{1}{5+x}\right] \\
& =\frac{d}{d x}\left[\sum_{n=0}^{\infty}\left(-\frac{1}{5}\right)^{n+1} x^{n}\right] \\
& =\frac{d}{d x}\left[\left(-\frac{1}{5}\right) x^{0}+\sum_{n=1}^{\infty}\left(-\frac{1}{5}\right)^{n+1} x^{n}\right] \\
& =0+\sum_{n=1}^{\infty}\left(-\frac{1}{5}\right)^{n+1} n x^{n-1} \quad \text { by Thm (term-by-term differentiation) }
\end{aligned}
$$

(you can stop here)

$$
=\sum_{n=0}^{\infty}\left(-\frac{1}{5}\right)^{n+2}(n+1) x^{n}
$$

Sec 11.9 Review $\operatorname{pg} 3$
(4) Find the antiderivative of the power series

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}=1-x+x^{2}-x^{3}+\cdots \quad \text { for } \quad|x|<1
$$

Answer

$$
\begin{aligned}
\int \frac{1}{1+x} d x & =\int\left(\sum_{n=0}^{\infty}(-1)^{n} x^{n}\right) d x \\
& \stackrel{*)}{=}\left(1-x+x^{2}-x^{3}+\ldots\right) d x \\
& =\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots\right)+C \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+C
\end{aligned}
$$

(5) Find $\int \ln \left(1+t^{4}\right) d t$ as a power series, and find its radius of convergence.

Answer

> Step 1:

$$
\ln (1+x)=\int \frac{1}{1+x} d x=\int\left(\sum_{n=0}^{\infty}(-1)^{n} x^{n}\right) d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+c \quad \text { from (*) above }
$$

To find C, ping in the center $x=0$ of the power series:

$$
\begin{aligned}
& \ln (1+0)=0+c \\
& \text { so } \quad c=0 \\
& \ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \quad \text { for }|x|<1
\end{aligned}
$$

Step $2:$

$$
\text { So } \begin{aligned}
\ln \left(1+t^{4}\right) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(t^{4}\right)^{n+1}}{n+1} \text { for }\left|t^{4}\right|<1 \Leftrightarrow|t|<1 \quad \begin{array}{l}
\text { Radius of } \\
\text { Convergence }
\end{array} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{+n+4}}{n+1}
\end{aligned}
$$

Step 3:

$$
\int \ln \left(1+t^{4}\right) d t=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{4 n+5}}{(n+1)(4 n+5)}+\text { Constant }
$$

Sec 11.9 Review pg 4
(6) Use the fact $\arctan (x) \stackrel{\left(\mathcal{K}^{*}\right)}{=} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$ (with radius of convergence 1) to find a power series representation of $\int \frac{\arctan (2 x)}{x} d x$. impossible to Find its radius of convergence. methods
Answer
$\arctan (2 x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 x)^{2 n+1}}{2 n+1}$ by $(*)$ given above

$$
=\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1} x^{2 n+1}}{2 n+1} \quad \text { for } \quad|2 x|<1 \Leftrightarrow|x|<\frac{1}{2}
$$ (Radius of convergence is $\frac{1}{2}$)

$$
\begin{aligned}
\frac{\arctan (2 x)}{x} & =\frac{1}{x} \sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1} x^{2 n+1}}{2 n+1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1} x^{2 n}}{2 n+1} \\
\int \frac{\arctan (2 x)}{x} d x & =\int \sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1}}{2 n+1} x^{2 n} d x \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{2 n+1}}{2 n+1} \frac{x^{2 n+1}}{2 n+1}+C \\
& =\left(2 x-\frac{2^{3} x^{3}}{9}+\frac{2^{5}}{25} x^{5}-\frac{2^{7} x^{7}}{49}+\ldots\right)+C
\end{aligned}
$$

Radius of convergence is the same as for the series for $\arctan (2 x): \frac{1}{2}$

Sec ll. 10 Review pg 1
The boxed equations are from Table 1, pg 808 (will be printed Fill in the blanks. for you).
$\ln (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}$ for $-1 \leq x<1$.
(1) $\sum_{n=1}^{\infty} \frac{1}{n 2^{n}}=\sum_{n=1}^{\infty} \frac{\left(\frac{1}{2}\right)^{n}}{n}=-\ln \left(1-\frac{1}{2}\right)=-\ln \left(\frac{1}{2}\right)=\ln (2)$
(2) $\ln (1+x)=\ln (1-(-x))=-\sum_{n=1}^{\infty} \frac{(-x)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}$ for $-1<x \leqslant 1$

- $\arctan \mathrm{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}$ for $-1 \leq x \leq 1$.
(3) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\arctan (1)=\frac{\pi}{4}$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad$ for $-\infty<x<\infty$.
(5) Find the sum of $1+4+\frac{4^{2}}{2!}+\frac{4^{3}}{3!}+\frac{4^{4}}{4!}+\ldots$
(4) $\sum_{n=0}^{\infty} \frac{1}{n!}=e^{1}$ Answer The series is $\sum_{n=0}^{\infty} \frac{4^{n}}{n!}=e^{4}$
- $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ for $-\infty<x<\infty$.

$$
\begin{aligned}
& \text { (6) }>\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1}}{(2 n+1)!}=\sin (\pi)=0 . \\
& \cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \quad \text { for all } x
\end{aligned}
$$

(7) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{6^{2 n}} \frac{\pi^{2 n}}{(2 n)!}=\cos \left(\frac{\pi}{6}\right)$

Sec ll. 10 Review pg 2

Theorem (given for you)
IF f has a power series representation at $x=a$, that is, if

$$
f(x)=\underbrace{\sum_{n=0}^{\infty} c_{n}(x-a)^{n}}_{\text {called "the Taylor series of } f(x)} \text { for }|x-a|<R,
$$

THEN its coefficients are given by

$$
\text { called the centered at } a^{\prime \prime}
$$

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

(8) If $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ and $f(0)=14, \quad f^{\prime}(0)=-15, \quad f^{\prime \prime}(0)=-1, \quad f^{\prime \prime \prime}(0)=-1$, find the first four terms of $\sum_{n=0}^{\infty} c_{n} x^{n}$.
Answer $\quad c_{0}=\frac{f(0)}{0!}=14 \quad c_{1}=\frac{f^{\prime}(0)}{1!}=-15 \quad c_{2}=\frac{f^{\prime \prime}(0)}{2!}=-\frac{1}{2} \quad c_{3}=\frac{f^{\prime \prime \prime}(0)}{3!}=-\frac{1}{6}$

$$
14-15 x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}
$$

(9) (From Textbook Example 1) If $f^{(n)}(a)=3^{n}$ for all $n \geqslant 0$, what is the Taylor series of $f(x)$ centered at $x=a$?

Answer $f(a)=3^{0}, f^{\prime}(a)=3^{1}, f^{\prime \prime}(a)=3^{2}, \ldots$
are given, so $c_{n}=\frac{f^{(n)}(a)}{n!}=\frac{3^{n}}{n!}$

So the answer is $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=\sum_{n=0}^{\infty} \frac{3^{n}}{n!}(x-a)^{n}$

$$
=1+3(x-a)+\frac{3^{2}}{2}(x-a)^{2}+\frac{3^{3}}{3!}(x-a)^{3}+\frac{3^{4}}{4!}(x-a)^{4}+\ldots 0
$$

Sec $l l .10$ Review pg 3
(10). One of the Webwork problems is to find that

$$
\ln (x)=\ln (10)+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{10^{n} n}(x-10)^{n}
$$

when x is in the interval of convergence of the power series.

- Assume you have done the computation showing this equality.

Find the interval of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{10^{n} n}(x-10)^{n}$.
Answer
Step (Find radius of convergence using Ratio Test)
Let $a_{n}=\frac{(-1)^{n-1}}{10^{n} n}(x-10)^{n}$

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{(x-10)^{n+1}}{10^{n+1}(n+1)} \cdot \frac{10^{n} n}{(x-10)^{n}}=\frac{(x-10)}{10} \frac{n}{n+1} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x-10}{10} \frac{n}{n+1}\right|=\left|\frac{x-10}{10}\right| \lim _{n \rightarrow \infty} \frac{n}{n+1}=\left|\frac{x-10}{10}\right|
\end{aligned}
$$

By Ratio Test, $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges when $\left|\frac{x-10}{10}\right|<1$

$$
\begin{aligned}
& \Longleftrightarrow|x-10|<10{ }^{\text {This is the }} \text { radius of } \\
& -10<x-10<10<\text { convergence } \\
& 10-10<x \quad<10+10
\end{aligned}
$$

Step 2 (Check endpoints)
Check $x=10-10=0: \sum_{n=0}^{\infty} \frac{(-1)^{n}}{10^{n} n}(-10)^{n}=\sum_{n=0}^{\infty}(-1)^{n}(-1)^{n} \frac{10^{n}}{10^{n}} \frac{1}{n}$
$=\sum_{n=0}^{\infty} \frac{1}{n}$ is the Harmonic series (divergent)
Check $x=10+10=20: \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}(10)^{n}}{10^{n} n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n}$ is convergent by Alternating Series Test ($\left\{\frac{1}{n}\right\}$ is a decreasing sequence $\frac{1}{n}>\frac{1}{n+1}$ for all $n \geqslant 0$)

Interval of Convergence: $(0,20]$

Sec ll. 10 Review pg 4

Table 1
Important Maclaurin
Series and Their Radii of Convergence
(11)
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots$ $R=1$
$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$
$R=\infty$
$\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
$R=\infty$
$\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
$R=\infty$
$\operatorname{Arctan}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$
$R=1$
$\ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$
$R=1$
(i) Evaluate $\int \frac{1}{2 x} d x$ (write as a "usual" elementary function)
(12)
(ii) Use part (i) and Table 1 above to write $\int \frac{e^{9 x}-1}{2 x} d x$ as a power series
(i) $\int \frac{1}{2 x} d x=\frac{1}{2} \ln x+C_{1}$
(ii)

$$
\begin{aligned}
& e^{9 x}=\sum_{n=0}^{\infty} \frac{(9 x)^{n}}{n!}=\sum_{n=0}^{\infty} 9^{n} \frac{1}{n!} x^{n} \quad \text { from Table 1, } e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& \frac{e^{9 x}}{2 x}=\frac{1}{2} \sum_{n=0}^{\infty} 9^{n} \frac{1}{n!} x^{n-1}=\frac{1}{2}\left[9^{0} \frac{1}{0!} \frac{1}{x}+\sum_{n=1}^{\infty} 9^{n} \frac{1}{n!} x^{n-1}\right] \\
& \int \frac{e^{9 x}}{2 x} d x=\frac{1}{2}\left[\ln x+\sum_{n=1}^{\infty} 9^{n} \frac{1}{n!} \frac{x^{n}}{n}\right]+C_{2} \\
& \text { So } \quad \int \frac{e^{9 x}-1}{2 x} d x=\int \frac{e^{9 x}}{2 x} d x-\int \frac{1}{2 x} d x \\
& =\frac{1}{2}\left[\ln x+\sum_{n=1}^{\infty} 9^{n} \frac{1}{n!} \frac{x^{n}}{n}\right]+C_{2}-\left[\frac{1}{2} \ln x+C_{1}\right] \\
& =\sum_{n=1}^{\infty} \frac{9^{n}}{2} \frac{1}{n!} \frac{1}{n} x^{n}+C
\end{aligned}
$$

Sec ll. 10 Review pg 5
(13) Use the table to write a power series representation of $\int \arctan \left(x^{2}\right) d x$ centered at $x=0$.

$$
\begin{aligned}
& \arctan \left(x^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{2}\right)^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{2 n+1} \\
& \int \arctan \left(x^{2}\right) d x=C+\sum_{n=0}^{\infty} \frac{(-1)^{n} \frac{x^{4 n+3}}{(2 n+1)(4 n+3)}}{}
\end{aligned}
$$

(14) Use the table to write a power series representation of $\int \arctan \left(x^{2}\right) d x$ centered at $x=0$.

$$
\begin{aligned}
x^{3} \arctan x & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+4}}{2 n+1} \\
\int x^{3} \arctan x & =\int_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+4}}{2 n+1}=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+5}}{(2 n+1)(2 n+5)}
\end{aligned}
$$

(15) Use Table 1 to write $\int x^{2} \sin \left(x^{2}\right) d x$ as a power series.

$$
\begin{aligned}
& \sin \left(x^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{2}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{(2 n+1)!} \\
& x^{2} \sin \left(x^{2}\right)=x^{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+4}}{(2 n+1)!} \\
& \int x^{2} \sin \left(x^{2}\right) d x=\int \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+4}}{(2 n+1)!} d x=C+\sum_{n=0}^{\infty} \frac{(-1)^{n} \frac{x^{4 n+5}}{(2 n+1)!(4 n+5)}}{l}
\end{aligned}
$$

(16) Use Table 1 to write $\int \sin \left(x^{4}\right) d x$ as a power series centered at $x=0$. $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ for all x, so $\sin \left(x^{4}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{8 n+4}}{(2 n+1)!}$ for all x and

$$
\int \sin \left(x^{4}\right) d x=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{8 n+5}}{(2 n+1)!(8 n+5)} .
$$

Statements to memorizeAlternating Series Test
Statement:

Limit Comparison Test
Statement:

Ratio Test
Statement:a geometric series converges when...
O a geometric series diverges when...a p-series series converges when...
O a p-series series diverges when...

