Sec 7.1 Review part I

- Find $\int x \sin (x) d x$
- Evaluate $\int \ln (x) d x$
- Compute $\int x e^{x} d x$. Use it to compute $\int x^{2} e^{x} d x$
- Calculate $\int e^{x} \sin (x) d x$.
- Compute $\int_{0}^{1} \frac{x}{1+x^{2}} d x$
- Calculate $\int_{0}^{1} \arctan (x) d x$
- Calculate $\int_{0}^{1} \arcsin (x) d x$
- Evaluate (\#2) $\int \sqrt{x} \ln (x) d x$
(\#15) $\int(\ln x)^{2} d x$
(\#26) $\int_{1}^{2} x^{2} \ln (x) d x$
(\#27) $\int_{1}^{5} \frac{\ln (x)}{x^{2}} d x$
(\#31) $\int_{1}^{5} \frac{x}{e^{x}} d x$
(\#58) $\int_{1}^{0}\left[x e^{-x}-x^{2} e^{-x}\right] d x$
(\#61) $\int_{0}^{1} 2 \pi x \cos \left(\frac{\pi}{2} x\right) d x$
7.1 Recommended Textbook Practice SOLUTIONS. pdf

Webwork 7.1
If $g(1)=3, g(5)=10$, and $\int_{1}^{5} g(x) d x=-10$, evaluate the integral $\int_{1}^{5} x g^{\prime}(x) d x$.
Let $u=x, d v=g^{\prime}(x) d x \Rightarrow d u=d x, v=g(x)$. We then have

$$
\begin{aligned}
& \quad \int_{1}^{5} x g^{\prime}(x) d x=\underbrace{[x g(x)]_{1}^{5}-\int_{1}^{5} g(x) d x}_{\left.u v\right|_{1} ^{5}-\int_{1}^{5} v d u}=[5 \cdot g(5)-1 \cdot g(1)]+\underbrace{10}_{\text {given }}=5 \cdot(10)-3+10=57 \\
& u=x \quad d v=g^{\prime}(x) d x \\
& d u=d x \quad v=g(x)
\end{aligned}
$$

Webwork 7.1
Suppose that $f(1)=-5, f(4)=-2, f^{\prime}(1)=-7, f^{\prime}(4)=1$, and $f^{\prime \prime}$ is continuous. Find the value of $\int_{1}^{4} x f^{\prime \prime}(x) d x$.

$$
\begin{array}{ll}
\int x f^{\prime \prime}(x) d x=u v-\int v d u=x f^{\prime}(x)-\int f^{\prime}(x) d x \\
u=x & d v=f^{\prime \prime}(x) d x \\
d u=d x & v=f^{\prime}(x)
\end{array}
$$

$$
\begin{aligned}
\int_{1}^{4} x f^{\prime \prime}(x) d x & =\left.x f^{\prime}(x)\right|_{1} ^{4}-\int_{1}^{4} f^{\prime}(x) d x \\
& =4 f^{\prime}(4)-1 f^{\prime}(1)-[f(4)-f(1)] \\
& =4(1)-(-7)-[(-2)-(-5)] \\
& =4+7-[3] \\
& =8
\end{aligned}
$$

Sec 7.2 Review
These identities will be given if needed:

$$
\begin{aligned}
& \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \\
& \sin x \cos x=\frac{1}{2} \sin 2 x
\end{aligned}
$$

Look up solutions on...

Strategy for $\int(\sin x)^{\text {even umber }} d x$?
Strategy for $\int(\cos x)^{\text {even number }} d x$?
Compute $\int(\sin x)^{4} d x, \int_{0}^{\pi}(\sin x)^{2} d x, \int(\cos x)^{2} d x$

Strategy for $\int(\sin x)^{\text {odd }}$number $(\cos x)^{m} d x$	pg 521

Strategy for $\int(\cos x)^{\text {odd }}$ number $(\sin x)^{n} d x$?

Compute $\int(\cos x)^{3} d x, \int(\sin x)^{5}(\cos x)^{2} d x$	pg 519
Compute $\int(\cos x)^{7} d x, \int(\sin x)^{7} d x$	Lecture notes 7.2
Compute $\int \tan x d x$	old Section 6.4
pg 432	

Sec 7.3 Review part I

then

$$
\begin{aligned}
& x= \frac{2}{2 \tan \theta}=\sqrt{\cos \theta} \\
& d x=2(\sec \theta)^{2} d \theta \sqrt{x^{2}+4} \\
& \sqrt{x^{2}+4}=2 \sec \theta
\end{aligned}
$$

Set up the trig substitution for $\int_{0}^{2} x^{3} \sqrt{x^{2}+4} d x$.
Stop there. DO NOT solve the integral.

Answer

$$
\int_{\theta=0}^{\theta=\frac{\pi}{4}} 8(\tan \theta)^{3} \frac{2}{\cos \theta} 2(\sec \theta)^{2} d \theta=32 \int_{0}^{\frac{\pi}{4}}(\tan \theta)^{3}(\sec \theta)^{3} d \theta
$$

For each integral, choose all triangle/s that will work for trig substitution

I: $\sqrt{25}$ must be the hypotenuse.
$\sqrt{25-16 x^{2}}$ can be either the opp or adj.
II: $\sqrt{16 x^{2}}$ must be the hypotenuse.
$\sqrt{16 x^{2}-25}$ can be either the opp or adj
III: $\sqrt{16 x^{2}+25}$ must be the hypotenuse $4 x$ and 5 are opp / adj (doesrit matter)

Sec 7.3 Review Part III

Compute $\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x$ using trig substitution.
Label all three sides of \qquad so that they match your trig sub.

Compute $\int \frac{1}{\left.9 x^{2}-25\right]^{\frac{3}{2}}} d x$ by performing trig substitution

Sec 7.4 Review Part I
What is the partial fraction decomposition for $\frac{9 x+3}{x^{2}-9}$?
(a) $\frac{A}{x-3}+\frac{B}{x+3}$
(b) $\frac{A x+B}{x-3}+\frac{C x+D}{x+3}$
(c) $\frac{A}{x^{2}}+\frac{B}{9}$
(d) $\frac{A}{x-3}+\frac{B}{(x-3)^{2}}+\frac{C}{x+3}+\frac{D}{(x+3)^{2}}$

What is the partial fraction decomposition for $\frac{5 x^{3}-3 x^{2}-8 x-3}{x^{4}-3 x^{3}}$
(a) $\frac{A}{x^{3}}+\frac{B}{x-3}$
(b) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x-3}$

$$
\frac{5 x^{3}-3 x^{2}-8 x-3}{x^{3}(x-3)}=\underbrace{\frac{A}{x}+\frac{B}{x^{2}}+\frac{c}{x^{3}}}+\frac{D}{x-3}
$$

because factor x has 3 repetitions
(c) $\frac{A}{x}+\frac{B}{x-3}$
(d) $\frac{A}{x^{4}}+\frac{B}{3 x^{3}}$
$\begin{aligned} & \text { Helpful } \\ & \text { fact }\end{aligned} \frac{6 t}{(3 t-5)(3 t+5)}=\frac{1}{3 t-5}+\frac{1}{3 t+5}$ by partial fraction decomposition.

Question Evaluate $\int \frac{6 x}{9 x^{2}-25} d x$

$$
\left.\begin{array}{rl}
\frac{6 x}{9 x^{2}-25}=\frac{1}{3 x-5}+\frac{1}{3 x+5} \\
\begin{array}{l}
\text { (given above- you don't } \\
\text { need to compute) }
\end{array} & \int \frac{6 x}{9 x^{2}-25} d x
\end{array}=\int\left(\frac{1}{3 x-5}+\frac{1}{3 x+5}\right) d x\right]+C . \quad \frac{\ln |3 x-5|}{3}+\frac{\ln \mid 3 x+5}{3}+\quad .
$$

Sec 7.4 Review part III

True or false? It is possible to integrate every rational function (a ratio of polynomials) in terms of the functions we know
TRUE - If a rational function $\frac{P(x)}{Q(x)}$ is proper, meaning $\operatorname{deg}(p)<\operatorname{deg}(Q)$ then it falls into CASES I-IV (see top of pg 534)

- If a rational function $\frac{P(X)}{Q(x)}$ is not proper, then we can perform the long division so that we have $\frac{P(x)}{Q(x)}=($ polynomial $)+\frac{R(x)}{Q(x)}$ where $\frac{R(x)}{Q(x)}$ is proper

Evaluate $\int \frac{x^{3}+x}{x-1} d x \quad$ first performing long division
Sol: Example 1, p] 533

Evaluate $\int \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x} d x$ first performing
Sol: Example 2, pg 534
partial fraction decomposition

Find $\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x \quad$ first performing long division and Sol: Example 4, pg 536

Evaluate $\int \frac{\sqrt{x+4}}{x} d x$ first turning the problem into a problem of integrating a rational function pg 540 (using substitution $u=\sqrt{x+4}$)
7.5 part I
(you don't need to verify):
given: $(3 t-5)(3 t+5)$ (you dort $3 t-5$ ned to
Question Describe all possible Calc 2 methods for solving $\int \frac{6 x}{9 x^{2}-25} d x$ and describe the first few steps.

The very first step is to perform partial fraction de composition $\frac{6 x}{9 x^{2}-25}=\frac{1}{3 x-5}+\frac{1}{3 x+5}$ (given above- you don't . Then use the fact that $\int \frac{1}{3 x+b} d x=\frac{\ln |3 x+b|}{3}+c, c$ need to compute)

Use u-substitution with $u=9 x^{2}-25, d u=18 x d x$

Use trig substitution with so $\left.\frac{3 x}{5}=\csc \theta\right) O R$ 1 prefer \qquad

$$
>\frac{3 x}{5} \sqrt{\frac{3 x}{9 x^{2}-25}}
$$

so

$$
\frac{3 x}{5}=\sec \theta
$$

Perform Rationalizing Substitution with $u=\square, d x$ \square to get $\int d u$ then apply partial fraction decomposition.

NO: "Rationalizing substitution" is to turn a non-rational integrand into a rational integrand using substitution. But $\frac{6 x}{9 x^{2}-25}$ is already a rational function, $\frac{\text { polynomial }}{\text { polynomial }}$
7.5 part III

Helpful
fact $\frac{1}{(t-1) t}=\frac{1}{t-1}-\frac{1}{t}$ by partial fraction decomposition. (you don't need to verify.) given:
Question Select all possible methods for solving $\int \frac{1}{1+e^{x}} d x$ and describe the first few steps. Leave unhelpful methods unchecked.

The very first step is to perform partial fraction decomposition Do not
select
partial fraction decomposition only applies to rational functions.
To use partial fraction method on a non-rational function, you must first apply Rationalizing Substitution (end of Sec 7.4)
(Multiply $\frac{1}{1+e^{x}}$ by $\frac{e^{-x}}{e^{-x}}$, then do u-substitution $u=e^{-x}+1, d u=-e^{-x} d x$

$$
\int \frac{-e^{-x}}{e^{-x}+1} d x=\int \frac{-1}{u} d u=-\ln |u|+C=-\ln \left(e^{-x}+1\right)+C
$$

Use trig substitution with

so

$$
x=
$$

Do not select

Trig substitution is only helpful when Pythagorean the can be applied, i.e. when the integrand contains a factor in the form $\sqrt{\square^{2}}+\square^{2}$ like $\int(\text { quadratic polynomial })^{n}$ or $\int \frac{1}{x^{2} \sqrt{x^{2}-16}} d x$
$\sqrt{\square}$ Perform Rationalizing Substitution with $u=1+e^{x}, d x=\frac{1}{u-1}$

$$
\begin{aligned}
& u-1=e^{x} \\
& \ln (u-1)=x
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{1}{u} \frac{1}{u-1} d u=\int\left(\frac{1}{u-1}-\frac{1}{u}\right) d u & =\ln |u-1|-\ln |u|+C \\
& =\ln \left|e^{x}\right|-\ln \left|1+e^{x}\right|+C \\
& =x-\ln \left|1+e^{x}\right|+C
\end{aligned}
$$

7.8 part I
(1) Select all improper integrals.

Leave choices which are not improper integrals unchecked
$\int_{3}^{7} \frac{1}{\sqrt{x-3}} d x$
$\underset{\substack{\text { Dort } \\ \text { Select }}}{\square} \int_{3}^{7} \frac{e^{x}}{x+3} d x$
$\int_{6}^{\infty} \frac{1}{x^{2}+3} d x$
$\int_{1}^{\infty} \frac{1}{x^{2}} d x$

Improper integral because $\frac{1}{\sqrt{x-3}}$
has infinite discontinuity at a point in $[3,7]$:

$$
\lim _{x \rightarrow 3^{+}} \frac{1}{\sqrt{x-3}}=\infty
$$

The function $\frac{e^{x}}{x+3}$ is continuous at every point in $[3,7]$

The region $[6, \infty)$ is unbounded, so this is an improper integral

The region $[1, \infty)$ is unbounded, so this is an improper integral
(2) Suppose we know that

If $t>2$, then $\int_{2}^{t} f(x) d x=1-\frac{\ln (t)+1}{t}$. Evaluate $\int_{2}^{\infty} f(x) d x$.
Answer: $\int_{2}^{\infty} f(x) d x \stackrel{\text { def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} f(x) d x$

$$
=\lim _{t \rightarrow \infty} 1-\frac{\ln (t)+1}{t}
$$

$$
=1-\lim _{t \rightarrow \infty} \frac{\ln (t)+1}{t}
$$

$=1-\lim _{t \rightarrow \infty} \frac{\left(\frac{1}{t}\right)}{1} \quad$ (by I'Hospital's Rule ∞) $=1-0$
7.8 part III
(3) Evaluate $\int_{1}^{\infty} \frac{1}{x} d x$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.

Answer: $\quad \int_{1}^{\infty} \frac{1}{x} d x \stackrel{\text { Def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln |x|\right|_{1} ^{t}=\lim _{t \rightarrow \infty} \ln |t|-\ln (1)=\infty$

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x \stackrel{\text { Def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} 1-\frac{1}{t}=1
$$

(4) If $\int_{t}^{5} f(x) d x=2(\sqrt{3}-\sqrt{t-2})$ for t in $(2,3]$, (i) evaluate $\int_{2}^{5} f(x) d x$.
(ii) $s \int_{2}^{5} f(x) d x$ convergent or divergent? (ii) $\int_{2}^{5} f(x) d x$ is convergent.

Answer: (i) $\int_{2}^{5} f(x) d x \stackrel{\operatorname{def}}{=} \lim _{t \rightarrow 2^{+}} \int_{t}^{5} f(x) d x=\lim _{t \rightarrow 2^{+}} 2(\sqrt{3}-\sqrt{t-2})=2 \sqrt{3}$
(5) If $\int_{0}^{t} f(x) d x=\arctan (t)$ for $t>0$, (i) evaluate $\int_{0}^{\infty} f(x) d x$.
(ii) Is $\int_{0}^{\infty} f(x) d x$ convergent or divergent ? (ii) $\int_{0}^{\infty} f(x) d x$ is convergent.

Answer : (i) $\int_{0}^{\infty} f(x) d x \stackrel{\operatorname{def}}{=} \lim _{t \rightarrow \infty} \int_{0}^{t} f(x) d x=\lim _{t \rightarrow \infty} \arctan (t)=\frac{\pi}{2}$
(6) If $\int_{0}^{t} f(x) d x=\ln |t-1|$ for t in $[0,1)$, (i) evaluate $\int_{0}^{1} f(x) d x$.
iii) $\int_{0}^{1} f(x) d x$ convergent or divergent? (ii) $\int_{0}^{1} f(x) d x$ is divergent

Answer: (i) $\int_{0}^{1} f(x) d x^{D E F}=\lim _{t \rightarrow 1^{-}} \int_{0}^{t} f(x) d x=\lim _{t \rightarrow 1^{-}} \ln |t-1|=-\infty$
(7) If $\int_{0}^{t} f(x) d x=\sin (t)$ for t in $[0, \infty)$, (i) evaluate $\int_{0}^{\infty} f(x) d x$.
(ii) Is $\int_{0}^{\infty} f(x) d x$ convergent or divergent? (ii) $\int_{0}^{\infty} f(x) d x$ is divergent.

Answer: (i) $\int_{0}^{\infty} f(x) d x \stackrel{\operatorname{def}}{=} \lim _{t \rightarrow \infty} \int_{0}^{t} f(x) d x=\lim _{t \rightarrow \infty} \sin (t)$ does not exist.

Sec 7.8 Review part III Answer key some helpful facts (you don't need to check):
(1) $\int_{1}^{\infty} \frac{1}{x} d x \stackrel{\text { Def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln |x|\right|_{1} ^{t}=\lim _{t \rightarrow \infty} \ln |t|-\ln (1)=\infty$
(ii) $\int_{1}^{\infty} \frac{1}{x^{2}} d x \stackrel{\text { Def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} 1-\frac{1}{t}=1$
(iii) e^{-x} is positive for all x in $[1, \infty$) (in fact, for all x)

Question Use either $\int_{1}^{\infty} \frac{1}{x} d x$ or $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ to show using the Comparison Test that $\int_{1}^{\infty} \frac{1+e^{-x}}{x} d x$ is divergent / convergent (choose one).

Answer . Since e^{-x} is always positive, we have $0 \leqslant \frac{1}{x} \leqslant \frac{1+e^{-x}}{x}$ for $x \geqslant 1$

$$
\text { - } \int_{1}^{\infty} \frac{1}{x} d x \stackrel{\text { Def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln |x|\right|_{1} ^{t}=\lim _{t \rightarrow \infty} \ln |t|-\ln (1)=\infty
$$

- By the Comparison Thm, $\int_{1}^{\infty} \frac{1+\mathrm{e}^{-x}}{x} d x=\infty$
- we have shown that $\int_{1}^{\infty} \frac{1+e^{-x}}{x} d x$ is divergent.
-the end of answer -
Strategies
How did 1 know to try using $\int_{1}^{\infty} \frac{1}{x} d x$ instead of $\int_{1}^{\infty} \frac{1}{x^{2}} d x$?

1. I see that $\frac{1+e^{-x}}{x}$ is more similar to $\frac{1}{x}$ (than to $\frac{1}{x^{2}}$)
$2 I$ see that $\frac{1+e^{-x}}{x}=\frac{1}{x}+\frac{e^{-x}}{x}$ so $\frac{1+e^{-x}}{x}>\frac{1}{x}$ for x in $[1, \infty)$.
2. It's also true that $\frac{1+e^{-x}}{x}>\frac{1}{x^{2}}$ for x in $[1, \infty)$, but it's not helpful since $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges

Sec 7.8 Review part IV Answer key
some helpful facts (you don't need to check):
(i) $\int_{1}^{\infty} \frac{1}{x} d x \stackrel{\text { Def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln |x|\right|_{1} ^{t}=\lim _{t \rightarrow \infty} \ln |t|-\ln (1)=\infty$
(ii)

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x \stackrel{\operatorname{Def}}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} 1-\frac{1}{t}=1
$$

(iii) Since $0<\arctan (x)<\frac{\pi}{2}$ for x in $[1, \infty)$, we have $0<\frac{1}{\pi} \arctan (x)<\frac{1}{2}<1$ for x in $[1, \infty$).

Question Use either $\int_{1}^{\infty} \frac{1}{x} d x$ or $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ to show using the Comparison Test that $\int_{1}^{\infty} \frac{\arctan (x)}{\pi x^{2}} d x$ is divergence/convergent (choose one).

Answer - Since $0<\arctan (x)<\frac{\pi}{2}$ for x in $[1, \infty)$,
we have $0<\frac{1}{\pi} \arctan (x)<\frac{1}{2}<1$ for x in $[1, \infty)$.

- So $0<\frac{1}{\pi} \frac{\arctan (x)}{x^{2}}<\frac{1}{x^{2}}$ for x in $[1, \infty)$
- $\int_{1}^{\infty} \frac{1}{x^{2}} d x \stackrel{\operatorname{Def}}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} 1-\frac{1}{t}=1$
- In particular, $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent
- By the Comparison Thm, $\int_{1}^{\infty} \frac{1}{\pi} \frac{\arctan (x)}{x^{2}} d x$ also is convergent.
- the end of answer (where we show that $\int_{1}^{\infty} \frac{1}{\pi} \frac{\arctan (x)}{x^{2}} d x$ is convergent) -

Strategies
How did 1 know to try using $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ instead of $\int_{1}^{\infty} \frac{1}{x} d x$? 1. I see that $\frac{\arctan (x)}{\pi x^{2}}$ is more similar to $\frac{1}{x^{2}}$ (than to $\frac{1}{x}$)
2. The hint says $0<\frac{\arctan (x)}{\pi}<1$ so $\frac{\arctan (x)}{\pi x^{2}}<\frac{1}{x^{2}}$ for x in $[1, \infty)$.
3. It's also true that $\frac{\arctan (x)}{\pi x^{2}}<\frac{1}{x}$ for x in $[1, \infty)$,
but it's not helpful since $\int_{1}^{\infty} \frac{1}{x} d x=\infty$.

WARNING:
$\int_{1}^{\infty} \frac{1}{\pi} \frac{\arctan (x)}{x^{2}}$ is equal to a number, but it's not equal to $\int_{1}^{\infty} \frac{1}{x^{2}} d x=1$

