· Find J × sin(x) d×	Pg 513
·Evaluate f ln (x) dx	
· Compute $\int x e^{x} dx$. Use it to compute $\int x^{2} e^{x} dx$	pq514
·Calculate fex sin(x) dx.	
· Compute $\int_0^1 \frac{x}{1+x^2} dx$	Pq 515
·Calculate of arctance dx	
· Calculate / arcsin(x) dx	lecture notes 7.1
• Evaluate (#2) $\int \sqrt{x} \ln(x) dx$ (#15) $\int (\ln x)^2 dx$	7.1 Recommended Textbook Practice Solutions.pdf
$(\#26) \int_{1}^{2} X^{2} \ln(x) dx$	
$(\#27) \int_{1}^{5} \frac{\ln(x)}{x^{2}} dx$	
$(\#31) \int_{1}^{5} \frac{x}{e^{x}} dx$	
$(\#58)$ $\int_{1}^{0} \left(x e^{-x} - x^2 e^{-x} \right) dx$	
$(\#61) \int_{0}^{1} 2\pi \times \cos\left(\frac{\pi}{2}x\right) dx$	

Webwork 7.1 If g(1) = 3, g(5) = 10, and $\int_{1}^{5} g(x) dx = -10$, evaluate the integral $\int_{1}^{5} xg'(x) dx$.

Webwork 7.1

Suppose that f(1) = -5, f(4) = -2, f'(1) = -7, f'(4) = 1, and f'' is continuous. Find the value of $\int_{1}^{4} x f''(x) dx$.

Sec 7.2 Review These identities will be given if needed:	
$\sin^2 x = \frac{1}{2}(1 - \cos 2x) \qquad \cos^2 x = \frac{1}{2}(1 + \cos 2x)$ $\sin x \cos x = \frac{1}{2}\sin 2x$	Look up solutions on
Strategy for $\int (sin x)^{number} dx$? Strategy for $\int (cos x)^{even} dx$?	Pg 521
Compute $\int (\sin x)^4 dx$, $\int_0^{\pi} (\sin x)^2 dx$, $\int (\cos x)^2 dx$	Fg 520
Strategy for $\int (sin x)^{number} (cos x)^m dx$? Strategy for $\int (cos x)^{number} (sin x)^n dx$?	احد وم
Compute $\int (\cos x)^3 dx$, $\int (\sin x)^5 (\cos x)^2 dx$	Pg 519
Compute $\int (\cos x)^7 dx$, $\int (\sin x)^7 dx$	Lecture notes 7.2
Compute Stanx dx	Old Section 6.4 Pg 432
Compute $\int \cot x dx = \int \frac{\cos x}{\sin x} dx$	Apply u-sub u=sinx du=cosx dx

Sec 7.3 Review part I

$$|f \qquad \int_{2}^{\sqrt{x}+4} x = \frac{2}{\sqrt{x^{2}+4}} = \frac{2}{\sqrt$$

Set up the trig substitution for
$$\int_{0}^{2} X^{3}\sqrt{\chi^{2}+4} dx$$
.
Stop there. DO NOT solve the integral.

For each integral, choose all triangle/s that will work for trig substitution

Sec 7.3 Review Part II	Look up solutions on
Compute $\int_{0}^{\sqrt{2}} \frac{x^2}{\sqrt{4-x^2}} dx$ using trig substitution. Label all three sides of $\int_{0}^{\sqrt{2}}$ so that they match your trig sub.	Lec Notes 7.3 A
Compute $\int \frac{1}{\left[\frac{9x^2-25}{2}\right]^{\frac{3}{2}}}$ by performing trig substitution	Lec Notes 7.3 <mark>C</mark>
Using $\int_{0}^{4\chi^2 = 3\chi}$. (Dourt use other methods)	

Sec 7.4 Review Part I

What is the partial fraction decomposition for $\frac{9x+3}{x^2-9}$?

(a) $\frac{A}{x-3} + \frac{B}{x+3}$

$$(b) \quad \frac{Ax+B}{x-3} + \frac{Cx+D}{x+3}$$

$$(C) \qquad \frac{A}{\chi^2} + \frac{B}{9}$$

(d)
$$\frac{A}{X-3} + \frac{B}{(X-3)^2} + \frac{C}{X+3} + \frac{D}{(X+3)^2}$$

What is the partial fraction decomposition for $\frac{5x^3 - 3x^4 - 8x - 3}{x^4 - 3x^5}$ (a) $\frac{A}{x^3} + \frac{B}{x-3}$ (b) $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^2} + \frac{D}{x-3}$ (c) $\frac{A}{x} + \frac{B}{x-3}$ (d) $\frac{A}{x^4} + \frac{B}{3x^3}$ Helpful $\frac{6t}{5x+5} = \frac{1}{3t-5} + \frac{1}{3t+5}$ by partial fraction decomposition.

Question Evaluate $\int \frac{6x}{9x^2-25} dx$

Sec 7.4 Review part I

True or false? It is possible to integrate every rational function (a ratio of polynomials) in terms of the functions we know

Evaluate
$$\int \frac{x^3 + x}{x - 1} dx$$

Evaluate $\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} dx$

Find
$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx$$

Evaluate
$$\int \frac{\sqrt{x+4}}{x} dx$$

7.5 part I

7.5 part II

Helpful $\frac{1}{t-1} = \frac{1}{t-1} - \frac{1}{t}$ by partial fraction decomposition. (you don't need to verify) given: $(t-1)t = \frac{1}{t-1} - \frac{1}{t}$ by partial fraction decomposition. (you don't need to verify) <u>Question</u> Select all possible methods for solving $\int \frac{1}{1+e^x} dx$ and describe the first few steps. Leave unhelpful methods unchecked.

$$\square Multiply \frac{1}{1+e^{x}} by \frac{e^{-x}}{e^{-x}}, then do u-substitution u=], du = []$$

$$\square Use trig substitution with so x = []$$

$$\square Perform Rationalizing Substitution with u=], dx = []$$

7.8 part I

J Select all improper integrals. Leave choices which are not improper integrals unchecked

$$\Box \qquad \int_{3}^{7} \frac{1}{\sqrt{x-3}} \, dx$$

$$\Box \int_{3}^{7} \frac{e^{x}}{x+3} dx$$

$$\Box \int_{6}^{\infty} \frac{1}{x^2 + 3} dx$$

$$\Box \int_{1}^{\infty} \frac{1}{X^2} dx$$

2 Suppose we know that
If
$$t > 2$$
, then $\int_{2}^{t} f_{G} dx = 1 - \frac{\ln(t) + 1}{t}$ Evaluate $\int_{2}^{\infty} f_{G}(x) dx$.

7.8 part II
3 Evaluate
$$\int_{1}^{\infty} \frac{1}{x} dx$$
 and $\int_{1}^{\infty} \frac{1}{x^{2}} dx$.

(4) If
$$\int_{t}^{5} f(x) dx = 2(\sqrt{3} - \sqrt{t-2})$$
 for t in $(2, 3]$, (i) evaluate $\int_{2}^{5} f(x) dx$.
(i) Is $\int_{2}^{5} f(x) dx$ convergent or divergent?

$$\int \int_{0}^{t} f(x) dx = \arctan(t) \text{ for } t > 0, \quad (i) evaluate \int_{0}^{\infty} f(x) dx.$$

$$(i) \quad |s = \int_{0}^{\infty} f(x) dx \quad \text{convergent or divergent } ?$$

(i) Is
$$\int_{0}^{t} f(x) dx = ln[t-1]$$
 for t in [0,1), (i) evaluate $\int_{0}^{1} f(x) dx$.
(ii) Is $\int_{0}^{1} f(x) dx$ convergent or divergent?

(7) If
$$\int_{0}^{t} f(x) dx = sin(t)$$
 for $t in [0, \infty)$, $(i) evaluate \int_{0}^{\infty} f(x) dx$.
(i) Is $\int_{0}^{\infty} f(x) dx$ convergent or divergent?

Sec 7.8 Review part III

some helpful facts (you don't need to check): (i) $\int_{1}^{\infty} \frac{1}{x} dx \stackrel{\text{ref}}{=} \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to \infty} \ln|x| \Big|_{1}^{t} = \lim_{t \to \infty} \ln|t| - \ln(1) = \infty$ (i) $\int_{1}^{\infty} \frac{1}{x^{2}} dx \stackrel{\text{ref}}{=} \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to \infty} 1 - \frac{1}{t} = 1$ (ii) e^{-x} is positive for all x in $[1,\infty)$ (in fact, for all x)

Question Use either $\int_{-\infty}^{\infty} \frac{1}{x} dx$ or $\int_{1}^{\infty} \frac{1}{x^2} dx$ to show using the Comparison Test that $\int_{-\infty}^{\infty} \frac{1+e^{-x}}{x} dx$ is divergent (choose one).

Strategies

Sec 7.8 Review part IV

some helpful facts (you don't need to check):

$$(i) \int_{1}^{\infty} \frac{1}{x} dx \stackrel{\text{pef}}{=} \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to \infty} \ln|x| \Big|_{1}^{t} = \lim_{t \to \infty} \ln|t| - \ln(1) = \infty$$

$$(i) \int_{1}^{\infty} \frac{1}{x^{2}} dx \stackrel{\text{pef}}{=} \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx = \lim_{t \to \infty} 1 - \frac{1}{t} = 1$$

$$(ii) \quad \text{Since } 0 < \arctan(x) < \frac{\pi}{2} \text{ for } x \text{ in } [1,\infty), \text{ we have } 0 < \frac{1}{\pi} \arctan(x) < \frac{1}{2} < 1 \text{ for } x \text{ in } [1,\infty).$$

Question Use either $\int_{-\infty}^{\infty} \frac{1}{x} dx$ or $\int_{-\infty}^{\infty} \frac{1}{x^2} dx$ to show using the Comparison Test that $\int_{-\infty}^{\infty} \frac{arctan(x)}{\pi x^2} dx$ is divergence / convergent (choose one).

Answer

Strategies