Sec 7.1 Review part I

- Find $\int x \sin (x) d x$
- Evaluate $\int \ln (x) d x$
- Compute $\int x e^{x} d x$. Use it to compute $\int x^{2} e^{x} d x$
- Calculate $\int e^{x} \sin (x) d x$.
- Compute $\int_{0}^{1} \frac{x}{1+x^{2}} d x$
- Calculate $\int_{0}^{1} \arctan (x) d x$
- Calculate $\int_{0}^{1} \arcsin (x) d x$
- Evaluate (\#2) $\int \sqrt{x} \ln (x) d x$
(\#15) $\int(\ln x)^{2} d x$
(\#26) $\int_{1}^{2} x^{2} \ln (x) d x$
(\#27) $\int_{1}^{5} \frac{\ln (x)}{x^{2}} d x$
(\#31) $\int_{1}^{5} \frac{x}{e^{x}} d x$
(\#58) $\int_{1}^{0}\left[x e^{-x}-x^{2} e^{-x}\right] d x$
(\#61) $\int_{0}^{1} 2 \pi x \cos \left(\frac{\pi}{2} x\right) d x$
7.1 Recommended Textbook Practice SOLUTIONS. pdf

Webwork 7.1

If $g(1)=3, g(5)=10$, and $\int_{1}^{5} g(x) d x=-10$, evaluate the integral $\int_{1}^{5} x g^{\prime}(x) d x$.

Webwork 7.1
Suppose that $f(1)=-5, f(4)=-2, f^{\prime}(1)=-7, f^{\prime}(4)=1$, and $f^{\prime \prime}$ is continuous. Find the value of $\int_{1}^{4} x f^{\prime \prime}(x) d x$.

Sec 7.2 Review
These identities will be given if needed:

$$
\begin{aligned}
& \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \\
& \sin x \cos x=\frac{1}{2} \sin 2 x
\end{aligned}
$$

Look up solutions on...

Strategy for $\int(\sin x)^{\text {even umber }} d x$?
Strategy for $\int(\cos x)^{\text {even number }} d x$?
Compute $\int(\sin x)^{4} d x, \int_{0}^{\pi}(\sin x)^{2} d x, \int(\cos x)^{2} d x$

Strategy for $\int(\sin x)^{\text {odd }}$number $(\cos x)^{m} d x$	pg 521

Strategy for $\int(\cos x)^{\text {odd }}$ number $(\sin x)^{n} d x$?

Compute $\int(\cos x)^{3} d x, \int(\sin x)^{5}(\cos x)^{2} d x$	pg 519
Compute $\int(\cos x)^{7} d x, \int(\sin x)^{7} d x$	Lecture notes 7.2
Compute $\int \tan x d x$	old Section 6.4
pg 432	

Sec 7.3 Review part I

$$
\begin{array}{r}
\text { then } x=\square \frac{2}{\sqrt{x^{2}+4}}= \\
d x=\square \\
\sqrt{x^{2}+4}=
\end{array}
$$

\square
\square

Set up the trig substitution for $\int_{0}^{2} x^{3} \sqrt{x^{2}+4} d x$.
Stop there. DO NOT solve the integral.

For each integral, choose all triangle/s that will work for trig substitution

I $\int x^{2} \sqrt{25-16 x^{2}} d x$
II $\int \frac{\sqrt{16 x^{2}-25}}{x^{3}}$
III $\int \frac{1}{\left(16 x^{2}+25\right)^{2}} d x$

I

III

Sec 7.3 Review Part III

Compute $\int_{0}^{\sqrt{2}} \frac{x^{2}}{\sqrt{4-x^{2}}} d x$ using trig substitution.
Label all three sides of \qquad so that they match your trig sub.

Compute $\int \frac{1}{\left.9 x^{2}-25\right]^{\frac{3}{2}}} d x$ by performing trig substitution

Sec 7.4 Review part I
What is the partial fraction decomposition for $\frac{9 x+3}{x^{2}-9}$?
(a) $\frac{A}{x-3}+\frac{B}{x+3}$
(b) $\frac{A x+B}{x-3}+\frac{C x+D}{x+3}$
(c) $\frac{A}{x^{2}}+\frac{B}{9}$
(d) $\frac{A}{x-3}+\frac{B}{(x-3)^{2}}+\frac{C}{x+3}+\frac{D}{(x+3)^{2}}$

What is the partial fraction decomposition for $\frac{5 x^{3}-3 x^{2}-8 x-3}{x^{4}-3 x^{3}}$
(a) $\frac{A}{x^{3}}+\frac{B}{x-3}$
(b) $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x-3}$
(c) $\frac{A}{x}+\frac{B}{x-3}$
(d) $\frac{A}{x^{4}}+\frac{B}{3 x^{3}}$
$\begin{aligned} & \text { Helpful } \\ & \text { fact } \\ & (3 t-5)(3 t+5)\end{aligned} \frac{6 t}{3 t-5}+\frac{1}{3 t+5}$ by partial fraction decomposition.
given: $(3 t-5)(3 t+5) \quad 3 t-5 \quad 3 t+5$
Question Evaluate $\int \frac{6 x}{9 x^{2}-25} d x$

Sec 7.4 Review part II

True or false? It is possible to integrate every rational function (a ratio of polynomials) in terms of the functions we know

Evaluate $\int \frac{x^{3}+x}{x-1} d x$

Evaluate $\int \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x} d x$

Find $\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x$

Evaluate $\int \frac{\sqrt{x+4}}{x} d x$
7.5 part I

Helpful $\frac{6 t}{(3 t-5)(3 t+5)}=\frac{1}{3 t-5}+\frac{1}{3 t+5}$ by partial fraction decomposition.
(you don't need to verify):
given: $(3 t-5)(3 t+5) 3 t-5$ (you don't need verify) $3 t+5$.
Question Describe all possible Calc 2 methods for solving $\int \frac{6 x}{9 x^{2}-25} d x$ and describe the first few steps.

The very first step is to perform partial fraction decomposition
. Then use the fact that $\int \frac{1}{3 x+b} d x=$

Use u-substitution with $u=$ \square , $d u=$ \square

Use trig substitution with so $\frac{3 x}{5}=$ \square $O R$

so $\frac{3 x}{5}=$ \square

Perform Rationalizing Substitution with $u=\square, d x$ \square to get \square then apply partial fraction decomposition.
7.5 part III

Question Select all possible methods for solving $\int \frac{1}{1+e^{x}} d x$
and describe the first few steps. Leave unhelpful methods unchecked.

The very first step is to perform partial fraction decompositionMultiply $\frac{1}{1+e^{x}}$ by $\frac{e^{-x}}{e^{-x}}$, then do u-substitution $u=\square$, $d u=$Use trig substitution with

so $\quad x=$
\qquadPerform Rationalizing Substitution with $u=\square, d x=$
7.8 part I
(1) Select all improper integrals.

Leave choices which are not improper integrals unchecked

$$
\int_{3}^{7} \frac{1}{\sqrt{x-3}} d x
$$$\int_{3}^{7} \frac{e^{x}}{x+3} d x$$\int_{6}^{\infty} \frac{1}{x^{2}+3} d x$$\int_{1}^{\infty} \frac{1}{x^{2}} d x$

(2) Suppose we know that

If $t>2$, then $\int_{2}^{t} f(x) d x=1-\frac{\ln (t)+1}{t}$. Evaluate $\int_{2}^{\infty} f(x) d x$.
7.8 part III
(3) Evaluate $\int_{1}^{\infty} \frac{1}{x} d x$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.
(4) If $\int_{t}^{5} f(x) d x=2(\sqrt{3}-\sqrt{t-2})$ for t in $(2,3]$, (i) evaluate $\int_{2}^{5} f(x) d x$.
(ii) 1 $\int_{2}^{5} f(x) d x$ convergent or divergent?
(5) If $\int_{0}^{t} f(x) d x=\arctan (t)$ for $t>0$, (i) evaluate $\int_{0}^{\infty} f(x) d x$.
(iii) Is $\int_{0}^{\infty} f(x) d x$ convergent or divergent?
(6) If $\int_{0}^{t} f(x) d x=\ln |t-1|$ for t in $[0,1)$, (i) evaluate $\int_{0}^{1} f(x) d x$.
(ii) Is $\int_{0}^{1} f(x) d x$ convergent or divergent?
(7) If $\int_{0}^{t} f(x) d x=\sin (t)$ for t in $[0, \infty)$, (i) evaluate $\int_{0}^{\infty} f(x) d x$.
(ii) Is $\int_{0}^{\infty} f(x) d x$ convergent or divergent ?

Sec 7.8 Review part III
some helpful facts (you don't need to check):
(1) $\int_{1}^{\infty} \frac{1}{x} d x \stackrel{\text { Def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln |x|\right|_{1} ^{t}=\lim _{t \rightarrow \infty} \ln |t|-\ln (1)=\infty$
(ii) $\int_{1}^{\infty} \frac{1}{x^{2}} d x \stackrel{\text { Def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} 1-\frac{1}{t}=1$
(iii) e^{-x} is positive for all x in $[1, \infty$) (in fact, for all x)

Question Use either $\int_{1}^{\infty} \frac{1}{x} d x$ or $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ to show using the Comparison Test that $\int_{1}^{\infty} \frac{1+\mathrm{e}^{-x}}{x} d x$ is divergent / convergent (choose one).

Answer . Since e^{-x} is always positive, we have ...

Strategies

Sec 7.8 Review part IV
some helpful facts (you don't need to check):
(i) $\int_{1}^{\infty} \frac{1}{x} d x \stackrel{\text { Def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x} d x=\left.\lim _{t \rightarrow \infty} \ln |x|\right|_{1} ^{t}=\lim _{t \rightarrow \infty} \ln |t|-\ln (1)=\infty$
(ii)

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x \stackrel{\text { Def }}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} 1-\frac{1}{t}=1
$$

(iii) Since $0<\arctan (x)<\frac{\pi}{2}$ for x in $[1, \infty)$, we have $0<\frac{1}{\pi} \arctan (x)<\frac{1}{2}<1$ for x in $[1, \infty)$.

Question Use either $\int_{1}^{\infty} \frac{1}{x} d x$ or $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ to show using the Comparison Test that $\int_{1}^{\infty} \frac{\arctan (x)}{\pi x^{2}} d x$ is divergence/convergent (choose one).

Answer

Strategies

