Sec 6.1 Review
(1) Sketch the inverse of the graph

or answer "no inverse, since $f(x)$ is not one-to-one"

Answer:

(2)

The graph of f is given.
(a) Why is f one-to-one?
(b) What are the domain and range of f^{-1} ?
(c) What is the value of $f^{-1}(2)$?
(d) Estimate the value of $f^{-1}(0)$.

(a) f is $1-1$ because it passes the Horizontal Line Test.
(b) Domain of $f=[-3,3]=$ Range of f^{-1}. Range of $f=[-1,3]=$ Domain of f^{-1}.
(c) Since $f(0)=2, f^{-1}(2)=0$.
(d)
f seems to intersect the x-axis at x between -1.5 and -1.9 , so $f^{-1}(0)$ is close to -1.7
(3)

Sketch the inverse of the graph

or answer "no inverse"
(4) sketch the inverse of the graph

Answer:

Answer:

- A function f is called one-to-one if... (if $x_{1} \neq x_{2}$ then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$) - Is $f(x)=x^{3}$ with domain all real numbers one-to-one?

- Is $f(x)=x^{2}$ with domain all real numbers one-to-one?

- If f is one-to-one with $\underbrace{\text { domain } A}_{\text {allowed inputs }}$ and $\underbrace{\text { image/ range }}_{\text {possible outputs }} B$, allowed inputs possible outputs
what is the domain of the inverse function f^{-1} of f ? B What is the image/range of the inverse function f^{-1} of f ? A

If $f^{-1}(x)=y$, then $f(y)=x$

- If x is in the domain of f, then $f^{-1}(f(x))=x$
. If x is in the domain of f^{-1}, then $f\left(f^{-1}(x)\right)=x$

Sec 6.2 Review

- If $b>1$, then $\lim _{x \rightarrow-\infty} b^{x}=0$ and $\lim _{x \rightarrow \infty} b^{x}=\infty$

Sketch the graph $y=b^{x}$

- If $0<b<1$, then $\lim _{x \rightarrow-\infty} b^{x}=\infty$ and $\lim _{x \rightarrow \infty} b^{x}=0$

Sketch the graph $y=b^{x}$

- If $b>0, b^{x+y}=b^{x} b^{y}$ and $\left(b^{x}\right)^{y}=b^{(x y)}$
- If $a>0, b>0,(a b)^{x}=a^{x} b^{x}$
- Evaluate $\lim _{x \rightarrow \infty}\left[\left(\frac{1}{2}\right)^{x}-1\right]=0-1$
- MEMORIZE $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
- $\lim _{x \rightarrow-\infty} e^{x}=0$ Remember and $\lim _{x \rightarrow \infty} e^{x}=\infty$
- Memorize $\int e^{x} d x=e^{x}+C$
- Evaluate $\int x^{2} e^{\left(x^{3}\right)} d x$.

$$
\begin{aligned}
u & =x^{3} \\
d u & =3 x^{2} d x
\end{aligned}
$$

$$
\int \frac{1}{3} e^{u} d u=\frac{1}{3} e^{u}+c \quad \frac{1}{3} d u=x^{2} d x
$$

$$
=\frac{1}{3} e^{x^{3}}+C
$$

Sec 6.3 Review

- Memorize If $\ln (x)=y$ then $x=e^{y}$
- Memorize If $x=e^{y}$ then $\ln (x)=y$
- Memorize $\ln \left(e^{x}\right)=x$
- Memorize If $x>0$, then $e^{(\ln x)}=x$
- Memorize $\ln (e)=1$

Recall $\ln (x)=\log _{e}(x)$

- $\ln (x y)=\ln (x)+\ln (y)$
- Memorize $\ln \left(x^{r}\right)=r \ln (x)$
- True or false? If x and r are positive, then $[\ln (x)]^{r}$ is equal to $r \ln (x)$ Answer: False. Counter example: let $r=2, x=e$. Then $[\ln (e)]^{2}=1^{2}=1$, but $2 \ln (e)=2.1=2$
- If $\ln (x)=5$, find $x \quad x=e^{\ln x}=e^{5}$

If $e^{5-3 x}=10$, find x

$$
5-3 x=\ln 10 \Rightarrow \frac{5-\ln 10}{3}=x
$$

- $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$ memorize and $\lim _{x \rightarrow \infty} \ln x=\infty$
- Sketch the graph of $y=\ln (x)$
. Sketch the graph of $y=\ln (x-2)-1$ shift 2 right

- Using Hospital's Rule ($\operatorname{Sec} 6.8$), we can compute
- $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=0$
- $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{p}}=0$ and $\lim _{x \rightarrow \infty} \frac{x^{p}}{\ln x}=\infty$ IF $P>1$

This means $\ln (x)$ grows more slowly than x^{p} for any positive p.

- Memorize $\frac{d}{d x}(\ln (x))=\square \frac{1}{x} \quad \frac{d}{d x}(\ln |x|)=\square \frac{1}{x} \quad$ pg 428
- If $b>0$, then $\frac{d}{d x}\left(b^{x}\right)=(\ln b) b^{x}$ since $b^{x}=e^{(\ln }$
- Differentiate $y=\ln (\sin x) \quad \frac{d y}{d x}=\frac{1}{(\sin x)}(\cos x)$
- Find $\frac{d}{d x} \sqrt{\ln (x)}=\frac{d}{d x}[\ln (x)]^{\frac{1}{2}}=\frac{1}{2}[\ln x]^{-\frac{1}{2}} \frac{1}{x}=\frac{1}{2} \frac{1}{x} \frac{1}{\sqrt{\ln x}}$
- MEMORIZE $\int \frac{1}{x} d x=\ln |x|+C \quad$ (include the $\left.\begin{array}{l}\text { absolute value sign }\end{array}\right)$
- Compute $\int_{1}^{e} \frac{\ln (x)}{x} d x$.

$$
\int_{\ln (1)=0}^{\ln (e)=1} u d u=\left.\frac{u^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}-0
$$

Differentiate $y=(1+\sqrt{x})^{x}$ using Logarithmic Differentiation method (i.e. Take \ln of both sides then do implicit differentiation)

$$
y=(1+\sqrt{x})^{x}
$$

(2) Perform implicit differentiation:
(1) Apply \ln to both sides:

$$
\begin{array}{rlrl}
\ln y & =\ln \left[(1+\sqrt{x})^{x}\right] & \frac{d}{d x}(\ln y) & =\frac{d}{d x}(x \ln (1+\sqrt{x})) \\
& =x \ln (1+\sqrt{x}) & \frac{1}{y} \frac{d y}{d x} & =x \frac{1}{1+\sqrt{x}}\left(\frac{1}{2} \frac{1}{\sqrt{x}}\right)+1 \cdot \ln (1+\sqrt{x}) \\
& =\frac{\sqrt{x}}{2} \frac{1}{1+\sqrt{x}}+\ln (1+\sqrt{x}) \\
\frac{d y}{d x} & =y\left[\frac{\sqrt{x}}{2} \frac{1}{1+\sqrt{x}}+\ln (1+\sqrt{x})\right] \\
\frac{d y}{d x} & =(1+\sqrt{x})^{x}\left[\frac{\sqrt{x}}{2} \frac{1}{1+\sqrt{x}}+\ln (1+\sqrt{x})\right]
\end{array}
$$

Sec 6.6 Review

$$
\frac{d}{d x}(\sin x)=\cos x, \quad \frac{d}{d x}(\cos x)=-\sin x, \frac{d}{d x}(\tan x)=(\sec x)^{2}
$$

Is $\sin ^{-1} x$ the same as $\frac{1}{\sin x}$? on: ransuy

- The domain of $\arctan (x)$ is all real all possible inputs numbers
- The image (range) of $\arctan (x)$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ all possible outputs
- Sketch the graph of $y=\tan (x)$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$ and the graph of $y=\arctan (x)$

$$
\lim _{x \rightarrow-\infty} \arctan (x)=-\frac{\pi}{2} \quad \lim _{x \rightarrow \infty} \arctan (x)=\frac{\pi}{2} \quad \text { pg } 478
$$

Use implicit differentiation to compute $\frac{d}{d x} \arctan (x)$ lecture notes 6.6

Express $\frac{d y}{d x}$ in terms of x
Let $y=\arctan (x)$

$$
\tan (y)=x
$$

Implicit Differentiation

$$
\begin{aligned}
& \frac{d}{d x}(\tan y)=\frac{d}{d x}(x) \quad \text { Recall } \\
& (\sec y)^{2} \frac{d y}{d x}=1 \\
& \cos y=\frac{\operatorname{adj} j}{r}=\frac{1}{\sqrt{1+x^{2}}} \\
& \left.\begin{array}{rl}
\frac{d y}{d x} & =\frac{1}{(\sec y)^{2}} \\
\triangleq(\cos y)^{2}
\end{array}\right\} \frac{(\cos y)^{2}=\frac{1}{\left(\mathcal{F}^{*}\right)}}{\frac{d y}{1+x^{2}}} \\
& \text { (}=\frac{1}{1+x^{2}} \\
& \frac{d}{d x}[\arctan (x)]=\frac{1}{1+x^{2}}
\end{aligned}
$$

- Compute $\arcsin \left(\frac{1}{2}\right)$ (Doŕt approximate)
- Compute tan $\left(\arcsin \left(\frac{1}{3}\right)\right)$ by drawing a triangle (Dort approximate)
- Use implicit differentiation to compute $\frac{d}{d x}(\arcsin (x))$ pg 475 Note: To get $\cos y=\frac{1}{\sqrt{1-x^{2}}}$, write $\sin (y)=x \Rightarrow \frac{1}{\sqrt{1-x^{2}}} x$
- Use implicit differentiation to compute $\frac{d}{d x} \arccos (x)$. Draw a triangle to compute $-\frac{1}{\sin (y)}$ notes 6.6

Sec 6.8 Review

If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is an indeterminate form of type "O"
If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is an indeterminate form of type " ∞ " (or $-\infty$) \quad (or $-\infty$)
you can replace " $x \rightarrow a^{\prime}$ " with " $x \rightarrow a^{+}$" or " $x \rightarrow a^{-}$" or " $x \rightarrow \infty$ " or " $x \rightarrow-\infty$ "
l'Hospital's Rule: (Memorize)
Suppose f^{\prime} and g^{\prime} exists and $g^{\prime}(x) \neq 0$.
If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is an indeterminate form of type "응" or " ∞ ", then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \quad$ IF $\ldots \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists or is $+\infty$ or $-\infty$

Evaluate $\lim _{x \rightarrow \infty}\left(1+\frac{3}{2 x}\right)^{5 x}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} 1+\frac{3}{2 x}=1 \quad \text { type "10" } \\
& \lim _{x \rightarrow \infty} 5 x=\infty
\end{aligned}
$$

Answer Write $y=\left(1+\frac{3}{2 x}\right)^{5 x}$
pg 492
r. 492

$$
\ln y=\ln \left[\left(1+\frac{3}{2 x}\right)^{5 x}\right]=5 x \ln \left(1+\frac{3}{2 x}\right)
$$

Compute $\lim _{x \rightarrow \infty} \ln y$ using I'tospital's Rule
Write $\ln y=\frac{5 \ln \left(1+\frac{3}{2 x}\right)}{\left(\frac{1}{x}\right)}$ OR $\ln y=5 \frac{x}{\left[\frac{1}{\ln \left(1+\frac{3}{2 x}\right)}\right]}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} 5 \ln \left(1+\frac{3}{2 x}\right)=\ln (1)=0\left\{\begin{array}{l}
\text { So we can } \\
\text { attempt r' } H \\
\text { Rule "o " }
\end{array}\right. \\
& \lim _{x \rightarrow \infty} \frac{1}{x}=0 \\
\lim _{x \rightarrow \infty} \ln y= & \lim _{x \rightarrow \infty} 5 \frac{\ln \left(1+\frac{3}{2 x}\right)}{\left(\frac{1}{x}\right)}=\lim _{x \rightarrow \infty} 5 \frac{1}{1+\left(\frac{3}{2 x}\right)^{\frac{3}{2}}\left(-\frac{1}{x^{2}}\right)}\left(-\frac{1}{x^{2}}\right)
\end{aligned} \lim _{x \rightarrow \infty} 5 \frac{3}{2} \frac{1}{1+\left(\frac{3}{2 x}\right)}=5 \frac{3}{2} \frac{1}{1}
$$

by I'H Rule "O"
Compute $\lim _{x \rightarrow \infty} y=e^{\lim _{x \rightarrow \infty}(\ln y)}=e^{\frac{15}{2}}$

Sec 6.8 Review (Cont'd)

- Is $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$
- Is $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$ an indeterminate form? If so, which type? Calculate $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$
- Is $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}$ an indeterminate form? If so, which type? Evaluate $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}$ pg 494
- Is $\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos (x)}$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos (x)}$
- What kind of limit is called an indeterminate form of type " $0 . \infty$ "? what should you do to turn this into type "0" or " 0∞ "?
- Is $\lim _{x \rightarrow 0^{+}} x \ln x$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow 0^{+}} x \ln x$.
- What kind of limit is called an indeterminate form of type " $\infty-\infty$ "? pg 496 What should you do to turn this into type " 0 " or " ∞ " ?
- Is $\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \sec x-\tan x$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \sec x-\tan x$ Indeterminate Powers Review
- What kind of limit is called an indeterminate form of type "0"?
- What kind of limit is called an indeterminate form of type " $\infty^{0 "}$?
- What kind of limit is called an indeterminate form of type "1 " ?

Strategy: $\quad y=(f(x))^{g(x)}$

$$
\ln (y)=\ln \left[(f(x))^{g(x)}\right]=(g(x)) \ln [f(x)]
$$

Calculate $\lim _{x \rightarrow a}(\ln (y))$
Then $\lim _{x \rightarrow a} y=\lim _{x \rightarrow a} e^{(\ln (y))}=e^{\lim _{x \rightarrow a}(\ln (y))}$.

- Is $\lim _{x \rightarrow 0^{+}}(1+\sin (4 x))^{\cot x}$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow 0^{+}}(1+\sin (4 x))^{\cot x}$
- Is $\lim _{x \rightarrow 0^{+}} x^{x}$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow 0^{+}} x^{x}$
- Is $\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}$ an indeterminate form? Evaluate $\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}$.

