Sec G.I Review

x

Sec 6.1 Review

• A function f is called one-to-one if ... (if
$$x_1 \neq x_2$$
 then $f(x_1) \neq f(x_2)$)
• Is $f(x) = x^3$ with domain all real numbers one-to-one? P? 401

 $y_2 = x^3$
• Is $f(x) = x^2$ with domain all real numbers one-to-one?
NO
• If f is one-to-one with domain A and image/range B,
allowed inputs possible outputs
what is the domain of the inverse function f^{-1} of f ? B
what is the image/range of the inverse function f^{-1} of f ? A
• If $f^{-1}(x) = y$, then $f(y) = x$
• If x is in the domain of f, then $f^{-1}(f(x)) = x$
• If x is in the domain of f^{-1} , then $f(f^{-1}(x)) = x$

Sec 6.2 Review

• If
$$b \ge 1$$
, then $\lim_{x \to -\infty} b^{x} = \bigcirc$ and $\lim_{x \to \infty} b^{x} = \bigcirc$
Sketch the graph $y = b^{x}$
• If $0 \le b \le 1$, then $\lim_{x \to -\infty} b^{x} = \bigcirc$ and $\lim_{x \to \infty} b^{x} = \bigcirc$
Sketch the graph $y = b^{x}$
• If $b \ge 0$, $b^{x+y} = \boxed{b^{x} b^{y}}$ and $(b^{x})^{y} = \boxed{b^{(xy)}}$
• If $a \ge 0$, $b \ge 0$, $(ab)^{x} = \boxed{a^{x} b^{x}}$
• Evaluate $\lim_{x \to \infty} \left[(\frac{1}{2})^{x} - 1 \right] = \bigcirc -1$

• MEMORIZE
$$\frac{d}{dx}(e^{x}) = e^{x}$$
 pg 414

• Evaluate
$$\int x^2 e^{(x^2)} dx$$
. $u = x^3$
 $du = 3x^2 dx$
 $\int \frac{1}{3}e^{u} du = \frac{1}{3}e^{u} + C$
 $= \frac{1}{3}e^{x^2} + C$

Sec 6.3 Review

• Memorize If
$$\ln(x) = y$$
 then $x = e^{y}$
• Memorize If $x = e^{y}$ then $\ln(x) = y$
• Memorize If $x > 0$ then $\ln(x) = y$
• Memorize $\ln(e^{x}) = \overline{x}$
• Memorize $\ln(e^{x}) = \overline{x}$
• Memorize $\ln(e^{x}) = 1$
Recall $\ln(x) = \log e^{x}$ $pq 422$
• $\ln(xy) = \ln(x) + \ln(y)$
• Memorize $\ln(x^{r}) = r \ln(x)$
• $\ln(xy) = \ln(x) + \ln(y)$
• Memorize $\ln(x^{r}) = r \ln(x)$
• True or false? If x and r are positive, then $[\ln(x_{0})]^{r}$ is equal to r $\ln(x)$
Answer: False. Counter example: let $r_{2}, x = e$. Then $[\ln(e_{0})]^{r} = 1^{k} = 1$, but 2 $\ln(e^{1}) = 2.1 + 2$
• If $\ln(x) = 5$, find x $x = e^{\ln x} = e^{2\pi x}$
• If $\ln(x) = 5$, find x $x = e^{\ln x} = e^{2\pi x}$
• If $e^{5-3x} = 10$, find x $x = e^{\ln x} = e^{2\pi x}$
• $1 = e^{5-3x} = 10$, find x $x = e^{\ln x} = e^{2\pi x}$
• $1 = e^{5-3x} = 10$, find x $x = e^{\ln(x-2)-1} = x$
• $1 = x$
• $1 = 1 + e^{2\pi x} + 1 = 1 + e^{2\pi x}$
• $1 = 1 + e^{2\pi x} + 1 = 1 + e^{2\pi x}$
• $1 = 1 + e^{2\pi x} + 1 + e^{2\pi x} +$

Sec 6.4 Review

Look up solutions on ...

• Memorize
$$\frac{d}{dx}(ln(x)) = \frac{1}{X}$$
 $\frac{d}{dx}(ln|x|) = \frac{1}{X}$ $\frac{1}{X}$ $\frac{1}{17}$ 431

• If
$$b > 0$$
, then $\frac{d}{dx}(b^{\times}) = (b \ b) \ b^{\times}$ since $b^{\times} = e^{(ln \ b) \times}$ Pg433

• Differentiate
$$y = ln(sin x) \frac{dy}{dx} = \frac{l}{(sin x)} \frac{dy}{dx} = \frac{l}{(sin x)} \frac{dy}{dx} = \frac{l}{(sin x)} \frac{dy}{dx} = \frac{l}{2} \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx} = \frac{l}{2} \frac{dy}{dx} \frac{dy}{dx} \frac{dy}{dx} = \frac{l}{2} \frac{dy}{dx} \frac{dy}{$$

MEMORIZE
$$\int \frac{1}{x} dx = \ln |x| + C$$
 (include the absolute value sign) Pg 431

Compute
$$\int_{1}^{e} \frac{\ln(x)}{x} dx$$
.
 $u = \ln x$
 $du = \frac{1}{x} dx$
 $u = \frac{1}{x} dx$
 $u = \frac{1}{x} dx$
 $u = \frac{1}{x} dx$
 $u = \frac{1}{x} dx$

Differentiate $y = (1 + \sqrt{x})^{X}$ using Logarithmic Differentiation method (i.e. Take In of both sides then do implicit differentiation)

$$y = (1 + \sqrt{x})^{X}$$
(2) Perform implicit differentiation:

$$\ln y = \ln \left[(1 + \sqrt{x})^{X} \right]$$

$$= x \ln (1 + \sqrt{x})$$

$$\frac{d}{dx} (\ln y) = \frac{d}{dx} \left(x \ln (1 + \sqrt{x}) \right)$$

$$= \frac{1}{y} \frac{dy}{dx} = x \frac{1}{1 + \sqrt{x}} \left(\frac{1}{2} \frac{1}{\sqrt{x}} \right) + 1 \cdot \ln (1 + \sqrt{x})$$

$$= \frac{\sqrt{x}}{2} \frac{1}{1 + \sqrt{x}} + \ln (1 + \sqrt{x})$$

$$\frac{dy}{dx} = y \left[\frac{\sqrt{x}}{2} \frac{1}{1 + \sqrt{x}} + \ln (1 + \sqrt{x}) \right]$$

$$\frac{dy}{dx} = (1 + \sqrt{x})^{X} \left[\frac{\sqrt{x}}{2} \frac{1}{1 + \sqrt{x}} + \ln (1 + \sqrt{x}) \right]$$

•

$$\frac{4}{4x}(\sin x) = \frac{\cos x}{1}, \frac{4}{4x}(\cos x) = \frac{-\sin x}{1}, \frac{4}{4x}(\tan x) = \frac{1}{(\sec x)^2}$$

$$\frac{19}{(\sec 2.4)}$$

$$\frac{19}{(\sec 2.4)}$$

$$\frac{1}{(\sec 2.4)}$$

$$\frac{1}{(\sec 2.4)}$$

$$\frac{1}{(\sec 2.4)}$$

$$\frac{1}{(\sec 2.4)}$$

$$\frac{1}{(\sec 2.4)}$$

$$\frac{1}{(\csc 2.4)}$$

· Compute
$$\arcsin(\frac{1}{2})$$
 (Dort approximate)
· Compute $\tan(\arcsin(\frac{1}{3}))$ by drawing a triangle (Dort approximate)

• Use implicit differentiation to compute
$$\frac{d}{dx} (\arcsin(x))$$
 pg 475
Note: To get $\cos y = \frac{1}{\sqrt{1-x^2}}$, write $\sin(y) = x \Rightarrow \frac{1}{\sqrt{1-x^2}} x$

Use implicit differentiation to compute
$$\frac{d}{dx} \operatorname{arccos}(x)$$
 Lecture
Draw a triangle to compute $-\frac{1}{\operatorname{sing}}$ notes 6.6

Sec 6.8 Review

If
$$\lim_{x \to \infty} f(x) = 0$$
 and $\lim_{x \to \infty} g(x) = 0$, then $\lim_{x \to \infty} \frac{f(x)}{f(x)}$ is an indeterminate form if type "S"
If $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} g(x) = \infty$, then $\lim_{x \to \infty} \frac{f(x)}{f(x)}$ is an indeterminate form if type "S"
(or - \infty) (or - \infty) (or - \infty)
If $\lim_{x \to \infty} \exp(ax) = \frac{1}{x \to \infty} \lim_{x \to \infty^{-1}} \frac{1}{x \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}}$
If $\lim_{x \to \infty} \exp(ax) = \frac{1}{x \to \infty^{-1}} \lim_{x \to \infty^{-1}} \frac{1}{x \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}}$
If $\lim_{x \to \infty^{-1}} \exp(ax) = \lim_{x \to \infty^{-1}} \frac{1}{x \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}}$
If $\lim_{x \to \infty^{-1}} \frac{1}{y(x)} = \lim_{x \to \infty^{-1}} \frac{1}{y(x)} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}}$
If $\lim_{x \to \infty^{-1}} \frac{1}{y(x)} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}}$
If $\lim_{x \to \infty^{-1}} \frac{1}{y(x)} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}}$
If $\lim_{x \to \infty^{-1}} \frac{1}{y(x)} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}}$
If $\lim_{x \to \infty^{-1}} \frac{1}{y(x)} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}}$
If $\lim_{x \to \infty^{-1}} \frac{1}{y(x)} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}}$
If $\lim_{x \to \infty^{-1}} \frac{1}{y(x)} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1}}$
If $\lim_{x \to \infty^{-1}} \frac{1}{y(x)} e^{-\frac{1}{x} \to \infty^{-1}} e^{-\frac{1}{x} \to \infty^{-1$

Sec 6.8 Review (Cont'd)

Look up solutions on ...

• Is $\lim_{x \to 1} \frac{\ln x}{x-1}$ an indeterminate form? If so, which type? Find $\lim_{x \to 1} \frac{\ln x}{x-1}$	P9 493
• Is $\lim_{x \to \infty} \frac{e^x}{x^2}$ an indeterminate form? If so, which type? Calculate $\lim_{x \to \infty} \frac{e^x}{x^2}$	
• Is $\lim_{x\to\infty} \frac{\ln x}{\sqrt[3]{x}}$ an indeterminate form? If so, which type? Evaluate $\lim_{x\to\infty} \frac{\ln x}{\sqrt[3]{x}}$ if	ጃ 494
$\cdot s _{x \to \pi^{-}} \frac{s_{\overline{i}n} \times}{1 - cos(x)} \text{ an indeterminate form } f so, which type ? Find \lim_{x \to \pi^{-}} \frac{s_{\overline{i}n} \times}{1 - cos(x)} \qquad P_{\overline{i}n}^{x}$	a 495
• What kind of limit is called an indeterminate form of type $0.\infty^{n}$? What should you do to turn this into type $\frac{0}{0}$ or $\frac{1}{00}$?	
\cdot_{ls} $\lim_{x \to ot} x \ln x$ an indeterminate form? If so, which type? Find $\lim_{x \to o+} x \ln x$.	
• What kind of limit is called an indeterminate form of type " $\infty - \infty$ "? Per what should you do to turn this into type " $\frac{0}{0}$ or " $\frac{\infty}{0}$ "?	j 496
• Is $\lim_{x \to (\frac{\pi}{2})} \sec x - \tan x$ an indeterminate form (if so, which type? Find $\lim_{x \to (\frac{\pi}{2})} \sec x - \frac{\pi}{2}$	·tanx
Indeterminate Powers Review Pg 4	97
· What kind of limit is called an indeterminate form of type "D"?	
• What kind of limit is called an indeterminate form of type " $\infty^{0^{n}}$?	
• What kind of limit is called an indeterminate form of type " 1^{∞} "?	
Strategy: $y = (f(x))^{g(x)}$ $ln(y) = ln [(f(x))^{g(x)}] = (g(x)) ln [f(x)]$	
Calculate lim (ln(y)) x>a (ln(y)) lim (ln(y))	
Then $\lim_{x \to a} y = \lim_{x \to a} e^{-x \to a} e^{-x \to a}$	
• Is $\lim_{x\to 0^+} (1 + \sin(4x))^{\cot x}$ an indeterminate form? If so, which type? Find $\lim_{x\to 0^+} (1 + \sin(4x))^{\cot x}$	x))
• Is $\lim_{X \to 0^+} X^X$ an indeterminate form? If so, which type? Find $\lim_{X \to 0^+} X^X$	