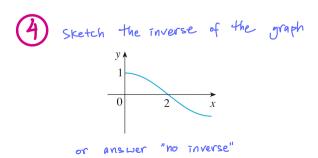

Sec 6.1 Review



The graph of f is given.

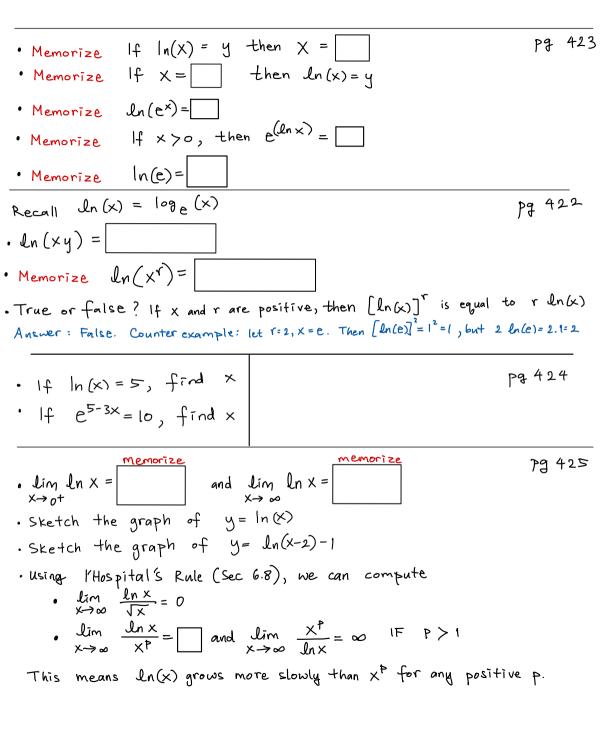
- (a) Why is f one-to-one?
- (b) What are the domain and range of f^{-1} ?
- (c) What is the value of $f^{-1}(2)$?
- (d) Estimate the value of $f^{-1}(0)$.

3) Sketch the inverse of the graph

A function f is called one-to-one if ...
 Is f(x) = x³ with domain all real numbers one-to-one?

· Is f(x) = x2 with domain all real numbers one-to-one?

· If f is one-to-one with domain A and image/range B, allowed inputs possible outputs what is the domain of the inverse function f⁻¹ of f? what is the image/range of the inverse function f⁻¹ of f?

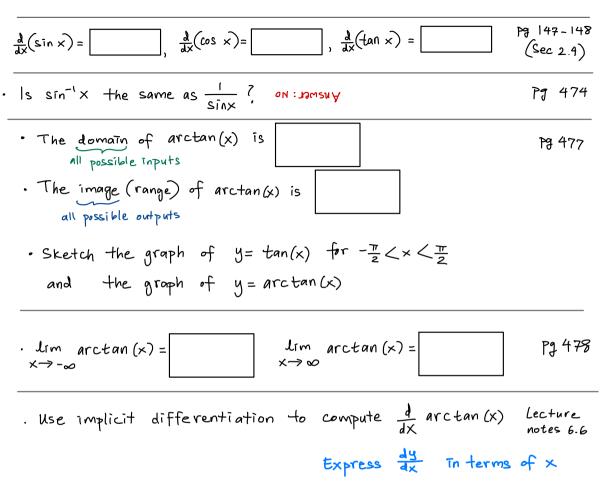

f'(x) = y, then f(y) = [pg 402] f'(x) = y, then f(y) = [f(x) = [f(x

Sec 6.2 Review

Look up solutions on ...

• If
$$b > 1$$
, then $\lim_{X \to \infty} b^{X} =$ and $\lim_{X \to \infty} b^{X} =$ pg 410
Sketch the graph $y = b^{X}$
• If $0 < b < 1$, then $\lim_{X \to \infty} b^{X} =$ and $\lim_{X \to \infty} b^{X} =$
Sketch the graph $y = b^{X}$
• If $b > 0$, $b^{X+y} =$ and $(b^{X})^{y} =$
• If $a > 0$, $b > 0$, $(a b)^{X} =$
• Evaluate $\lim_{X \to \infty} \left[\frac{1}{2}^{X} - 1 \right]$
• MEMORIZE $\frac{d}{dx} (e^{X}) =$ Pg 414
• $\lim_{X \to \infty} e^{X} =$ Pg 416
• Memorize $\int e^{X} dx =$ Pg 417
• Evaluate $\int x^{2} e^{(X^{3})} dx$.

Sec 6.3 Review


Sec 6.4 Review

Look up solutions on ...

• Memorize
$$\frac{d}{dx}(ln(x)) = \frac{d}{dx}(ln|x|) =$$

• Differentiate
$$y = \ln(\sin x)$$
 $\frac{dy}{dx} = \frac{1}{(\sin x)} (\cos x)$
• Find $\frac{d}{dx} \sqrt{\ln(x)} = \frac{d}{dx} [\ln(x)]^{\frac{1}{2}} = \frac{1}{2} (\ln x)^{-\frac{1}{2}} \frac{1}{x} = \frac{1}{2} \frac{1}{x} \frac{1}{\sqrt{\ln x}}$
• MENORIZE $\int \frac{1}{x} dx = \begin{bmatrix} (\operatorname{include the} \\ \operatorname{absolute value sign} \end{bmatrix}$ Pg 431
• Compute $\int_{1}^{e} \frac{\ln(x)}{x} dx$.

Differentiate $y = (1 \pm \sqrt{x})^{X}$ using Logarithmic Differentiation method (i.e. Take ln of both sides then do implicit differentiation)

Compute
$$\arcsin(\frac{1}{2})$$
 (Dor't approximate)
Compute $\tan(\arcsin(\frac{1}{3}))$ by drawing a triangle (Dor't approximate)

• Use implicit differentiation to compute
$$\frac{d}{dx}(\arcsin(x))$$
 pg 475

. Use implicit differentiation to compute $\frac{d}{dx} \operatorname{arccos}(x)$ Lecture Draw a triangle to compute $-\frac{1}{\sin(y)}$ notes 6.6

Sec 6.8 Review

If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)}$ is an indeterminate form of type " $\frac{0}{0}$ " If $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = \infty$, then $\lim_{x \to a} \frac{f(x)}{g(x)}$ is an indeterminate form of type " $\frac{0}{00}$ " you can replace " $x \to a$ " with " $x \to a^+$ " or " $x \to a^-$ " or " $x \to \infty$ " I'Hospital's Rule: (Memorize) Suppose f' and g' exists and g'(x) $\neq 0$. If $\lim_{x \to a} \frac{f(x)}{g(x)}$ is an indeterminate form of type " $\frac{0}{00}$ " then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ IF ... $\lim_{x \to a} \frac{f'(x)}{g(x)}$ exists or is two or $-\infty$

Evaluate $\lim_{X \to \infty} \left(1 + \frac{3}{2X}\right)^{5X}$

Sec 6.8 Review (Cont'd)

Look up solutions on ...

• Is $\lim_{x \to 1} \frac{\ln x}{x-1}$ an indeterminate form? If so, which type? Find $\lim_{x \to 1} \frac{\ln x}{x-1}$ P3493 • Is $\lim_{x \to \infty} \frac{e^x}{x^2}$ an indeterminate form? If so, which type? Calculate $\lim_{x \to \infty} \frac{e^x}{x^2}$ • Is $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$ an indeterminate form? If so, which type? Evaluate $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$ P3494 • Is $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$ an indeterminate form? If so, which type? Evaluate $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$ P3494
• Is $\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}}$ an indeterminate form? If so, which type? Evaluate $\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}}$ pg 494
$\cdot \text{ Is } \lim_{x \to \pi^{-}} \frac{\sin x}{1 - \cos(x)} \text{ an indeterminate form } \text{ If so, which type } \text{ Find } \lim_{x \to \pi^{-}} \frac{\sin x}{1 - \cos(x)} \qquad \qquad$
• What kind of limit is called an indeterminate form of type $"0.\infty"$? What should you do to turn this into type $"\frac{0}{0}"$ or " $\frac{1}{20}"$?
\cdot_{ls} $\lim_{X \to ot} x \ln x$ an indeterminate form? If so, which type? Find $\lim_{X \to o+} x \ln x$.
 What kind of [imit is called an indeterminate form of type "∞-∞"? pg 496 What should you do to turn this into type "⊙" or "∞"? Is lim sec x-tanx an indeterminate form? If so, which type? Find lim sec x-tanx x→(π/2)
Indeterminate Powers Review Pg 497
· What kind of limit is called an indeterminate form of type "D"?
• What kind of limit is called an indeterminate form of type " $\infty^{0^{n}}$?
• What kind of limit is called an indeterminate form of type " $\infty^{0^{n}}$? • What kind of limit is called an indeterminate form of type " $1^{\infty^{n}}$? Strategy : $y = (f(x))^{g(x)}$
• What kind of (imit is called an indeterminate form of type " $\infty^{0^{n}}$?
• What kind of limit is called an indeterminate form of type " ∞^{0} "? • What kind of limit is called an indeterminate form of type " 1^{∞} "? Strategy : $y = (f(x))^{g(x)}$ $ln(y) = ln [(f(x))^{g(x)}] = (g(x)) ln [f(x)]$ ($ln(y) = lm [(f(x)))$
• What kind of limit is called an indeterminate form of type " ∞^{0} "? • What kind of limit is called an indeterminate form of type " 1^{∞} "? Strategy: $y = (f(x))^{g(x)}$ $\ln(y) = \ln [(f(x))^{g(x)}] = (g(x)) \ln [f(x)]$
• What kind of limit is called an indeterminate form of type " ∞^{0^n} ? • What kind of limit is called an indeterminate form of type " 1^{∞^n} ? Strategy: $y = (f(x))^{g(x)}$ $\ln(y) = \ln [(f(x))^{g(x)}] = (g(x)) \ln [f(x)]$
• What kind of limit is called an indeterminate form of type " ∞^{0} "? • What kind of limit is called an indeterminate form of type " 1^{∞} "? • Strategy : $y = (f(x))^{g(x)}$ $ln(y) = ln [(f(x))^{g(x)}] = (g(x)) ln [f(x)]$ Calculate $lim(ln(y))$ $x \to a$ Then $lim y = lim e^{(ln(y))} = e^{lim(ln(y))}$