Sec 6.1 Review
(1) Sketch the inverse of the graph

or answer "no inverse, since $f(x)$ is not one-to-one"

2 The graph of f is given.
(a) Why is f one-to-one?
(b) What are the domain and range of f^{-1} ?
(c) What is the value of $f^{-1}(2)$?
(d) Estimate the value of $f^{-1}(0)$.

Sketch the inverse of the graph

or answer "no inverse"
(4) Sketch the inverse of the graph
 or answer "no inverse"

- A function f is called one-toone if...
- Is $f(x)=x^{3}$ with domain all real numbers one-to-one?
- Is $f(x)=x^{2}$ with domain all real numbers one-to-one?
- If f is one-to-one with $\underbrace{\text { domain } A}_{\text {allow wed inputs }}$ and $\underbrace{\text { image/range }}_{\text {possible outputs }} B$, allowed inputs possible outputs
what is the domain of the inverse function f^{-1} of f ? What is the image/range of the inverse function f^{-1} of f ?

If $f^{-1}(x)=y$, then $f(y)=$

- If x is in the domain of f, then $f^{-1}(f(x))=$ \square
. If x is in the domain of f^{-1}, then $f\left(f^{-1}(x)\right)=$ \square

Sec 6.2 Review

- If $b>1$, then $\lim _{x \rightarrow-\infty} b^{x}=\square$ and $\lim _{x \rightarrow \infty} b^{x}=\square$ pg 410

Sketch the graph $y=b^{x}$

- If $0<b<1$, then $\lim _{x \rightarrow-\infty} b^{x}=\square$ and $\lim _{x \rightarrow \infty} b^{x}=$ \square
Sketch the graph $y=b^{x}$
- If $b>0, b^{x+y}=\square$ and $\left(b^{x}\right)^{y}=$ \square
- If $a>0, b>0,(a b)^{x}=$ \square
- Evaluate $\lim _{x \rightarrow \infty}\left[\left(\frac{1}{2}\right)^{x}-1\right]$
- MEMORIZE $\frac{d}{d x}\left(e^{x}\right)=\square$ pg 414

$$
\text { - } \lim _{x \rightarrow-\infty} e^{x}=\square \text { Remember } \lim _{x \rightarrow \infty} e^{x}=\text { Remember }
$$

- Memorize $\int e^{x} d x=$ \square pg 417
- Evaluate $\int x^{2} e^{\left(x^{3}\right)} d x$.

Sec 6.3 Review

- Memorize If $\ln (x)=y$ then $x=\square$
- Memorize if $x=\square$ then $\ln (x)=y$
- Memorize $\ln \left(e^{x}\right)=\square$
- Memorize If $x>0$, then $e^{(\ln x)}=$
- Memorize $\ln (e)=$

Recall $\ln (x)=\log _{e}(x)$

- $\ln (x y)=$ \square
- Memorize $\ln \left(x^{r}\right)=$ \square
- True or false? If x and r are positive, then $[\ln (x)]^{r}$ is equal to $r \ln (x)$ Answer: False. Counter example: let $r=2, x=e$. Then $[\ln (e)]^{2}=1^{2}=1$, but $2 \ln (e)=2.1=2$
- If $\ln (x)=5$, find x
- If $e^{5-3 x}=10$, find x
memorize \square
- $\lim _{x \rightarrow 0^{+}} \ln x=$ \square and $\lim _{x \rightarrow \infty} \ln x=$
- Sketch the graph of $y=\ln (x)$
- Sketch the graph of $y=\ln (x-2)-1$
- Using Hospital's Rule (Sec 6.8), we can compute
- $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=0$
- $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{p}}=\square$ and $\lim _{x \rightarrow \infty} \frac{x^{p}}{\ln x}=\infty$ IF $P>1$

This means $\ln (x)$ grows more slowly than x^{p} for any positive p.

Sec 6.4 Review

- Memorize $\frac{d}{d x}(\ln (x))=\square \frac{d}{d x}(\ln |x|)=$
- If $b>0$, then $\frac{d}{d x}\left(b^{x}\right)=$ \square since $b^{x}=e^{(\ln b) x}$
- Differentiate $\quad y=\ln (\sin x) \quad \frac{d y}{d x}=\frac{1}{(\sin x)}(\cos x)$
- Find $\frac{d}{d x} \sqrt{\ln (x)}=\frac{d}{d x}[\ln (x)]^{\frac{1}{2}}=\frac{1}{2}[\ln x]^{-\frac{1}{2}} \frac{1}{x}=\frac{1}{2} \frac{1}{x} \frac{1}{\sqrt{\ln x}}$
- MEMORIZE $\int \frac{1}{x} d x=\square$ ($\left.\begin{array}{l}\text { include the } \\ \text { absolute value sign }\end{array}\right)$
pg 431
- Compute $\int_{1}^{e} \frac{\ln (x)}{x} d x$.

Differentiate $y=(1+\sqrt{x})^{x} \quad$ using Logarithmic Differentiation method (ie. Take \ln of both sides then do implicit differentiation)

Sec 6.6 Review

$$
\begin{aligned}
& \frac{d}{d x}(\sin x)=\square, \frac{d}{d x}(\cos x)=\square, \frac{d}{d x}(\tan x)=\square \\
& \hline \text { Is } \sin ^{-1} x \text { the same as } \frac{1}{\sin x} \text { ? on : assur } 147-148 \\
& (\sec 2.4)
\end{aligned}
$$

\square all possible outputs

- Sketch the graph of $y=\tan (x)$ for $-\frac{\pi}{2}<x<\frac{\pi}{2}$ and the graph of $y=\arctan (x)$

$$
\lim _{x \rightarrow-\infty} \arctan (x)=\square \quad \lim _{x \rightarrow \infty} \arctan (x)=\square \quad \text { pg } 478
$$

Use implicit differentiation to compute $\frac{d}{d x} \arctan (x)$ lecture $\begin{aligned} & \text { notes } 6.6\end{aligned}$ notes 6.6
Express $\frac{d y}{d x}$ in terms of x

- Compute $\arcsin \left(\frac{1}{2}\right)$ (Doŕt approximate)
- Compute tan $\left(\arcsin \left(\frac{1}{3}\right)\right)$ by drawing a triangle (Dort approximate)
- Use implicit differentiation to compute $\frac{d}{d x}(\arcsin (x))$ pg 475
- Use implicit differentiation to compute $\frac{d}{d x} \arccos (x)$. Draw a triangle to compute $-\frac{1}{\sin (y)}$ notes 6.6

Sec 6.8 Review

If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is an indeterminate form of type "O"

you can replace " $x \rightarrow a^{\prime}$ " with " $x \rightarrow a^{+}$" or " $x \rightarrow a^{-}$" or " $x \rightarrow \infty$ " or " $x \rightarrow-\infty$ "
I'Hospital's Rule: (Memorize)
Suppose f^{\prime} and g^{\prime} exists and $g^{\prime}(x) \neq 0$.
pg 492
If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is an indeterminate form of type "응" or " ∞ ",
then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \quad$ IF $\ldots \lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists or is $+\infty$ or $-\infty$

Evaluate $\lim _{x \rightarrow \infty}\left(1+\frac{3}{2 x}\right)^{5 x}$

Sec 6.8 Review (Cont'd)

- Is $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$
- Is $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$ an indeterminate form? If so, which type? Calculate $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$
- Is $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}$ an indeterminate form? If so, which type? Evaluate $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}$ pg 494
- Is $\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos (x)}$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos (x)}$
- What kind of limit is called an indeterminate form of type " $0 . \infty$ "? What should you do to turn this into type "0" or " 0∞ "?
- Is $\lim _{x \rightarrow 0^{+}} x \ln x$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow 0^{+}} x \ln x$.
- What kind of limit is called an indeterminate form of type " $\infty-\infty$ "? pg 496 What should you do to turn this into type " 0 " or " ∞ " ?
- Is $\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \sec x-\tan x$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} \sec x-\tan x$ Indeterminate Powers Review
- What kind of limit is called an indeterminate form of type "0"?
- What kind of limit is called an indeterminate form of type " $\infty^{0 "}$?
- What kind of limit is called an indeterminate form of type "1 " ?

Strategy: $\quad y=(f(x))^{g(x)}$

$$
\ln (y)=\ln \left[(f(x))^{g(x)}\right]=(g(x)) \ln [f(x)]
$$

Calculate $\lim _{x \rightarrow a}(\ln (y))$
Then $\lim _{x \rightarrow a} y=\lim _{x \rightarrow a} e^{(\ln (y))}=e^{\lim _{x \rightarrow a}(\ln (y))}$.

- Is $\lim _{x \rightarrow 0^{+}}(1+\sin (4 x))^{\cot x}$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow 0^{+}}(1+\sin (4 x))^{\cot x}$
- Is $\lim _{x \rightarrow 0^{+}} x^{x}$ an indeterminate form? If so, which type? Find $\lim _{x \rightarrow 0^{+}} x^{x}$
- Is $\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}$ an indeterminate form? Evaluate $\lim _{x \rightarrow 0^{+}}(1+x)^{1 / x}$.

