Sec 11.1 Review part I Answer key

Q1. Suppose $\lim _{n \rightarrow \infty} a_{n}=7$. Select all true statements below.
$\sqrt{\square}$ The sequence $\left\{a_{n}\right\}$ converges to 7
See

The terms a_{n} approach 7 as n becomes large
We can make a_{n} as close to 7 as we like by choosing a large enough n false The sequence $\left\{a_{n}\right\}$ diverges to 7
false \square The sequence $\underbrace{\left\{a_{n}\right\} \text { neither converges nor diverges }}$
This is never correct. If a sequence doesńt converge, it is called divergent. $\lim _{n \rightarrow \infty} a_{n}$ exists

Q2. Suppose $\lim _{n \rightarrow \infty} a_{n}=-\infty$. Select all true statements below.
false \square The sequence $\left\{a_{n}\right\}$ converges $\longrightarrow\left(\right.$ If $\left\{a_{n}\right\}$ converges, we would write $\left.\lim _{n \rightarrow \infty} a_{n}=\frac{6}{L}\right)$
$\checkmark \square \lim _{n \rightarrow \infty} a_{n}$ does not exist
$\sqrt{ } \square$ The sequence $\left\{a_{n}\right\}$ diverges
false $\square \lim _{n \rightarrow \infty} a_{n}$ exists (If $\lim _{n \rightarrow \infty} a_{n}$ exists, we would write $\lim _{n \rightarrow \infty} a_{n}=L^{6}$)
false \square The sequence $\left\{a_{n}\right\}$ neither converges nor diverges
This is never correct. If a sequence doesńt converge, it is called divergent.

Sec 11.1 Review part II

Give an example of a sequence which converges to $\frac{3}{6}$
Possible answers: Exercise 19, pg 744
Give an example of a sequence which converges to 1
Possible answers: Example 4, Example I/ with $r=1$, Exercise 4, 21, 29 (p g744)
Give an example of a sequence which converges to 0
Possible answers: Example 2, Example 6, Example 8, Example 9, Example 11 with $r=\frac{1}{3}$, Example 12, Example 13

Give an example of a convergent sequence whose terms are always positive (or o)
Possible answers: Example 1 (a), Example 4, Example 12

Give an example of a convergent sequence whose terms are sometimes positive (or 0) and sometimes negative

Possible answers: Example 1(b), Example 2, Example 8, Example Il with $r=-\frac{1}{2}$

Give an example of a divergent sequence whose terms are always positive
Possible answers: Example 5, Example ll with $r=2$, Exercise \# 24, 25

Give an example of a divergent sequence whose terms are sometimes positive and sometimes negative

Possible answers: Example 7, Exercise 39, Example II with $r=-2$
\qquad
Find a formula for the general term a_{n} of the sequences
Answers:

$$
\begin{align*}
& \frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \frac{7}{3125}, \ldots \tag{Example 2}\\
& -\frac{2}{3}, \frac{3}{9},-\frac{4}{27}, \frac{5}{81}, \ldots
\end{align*}
$$

Example $1 b$
$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$
Example Ia

Sec 11.2 Review Answer Key
Copy the question and solution to Example 1, pg 749
If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=1-\frac{1}{N+1}$, evaluate $\sum_{k=1}^{\infty} a_{k}$. solution: bottom half Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges. pg 752

If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=\frac{2}{7}\left[1-(0.3)^{n}\right]$, evaluate $\sum_{k=1}^{\infty} a_{k}$. Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.

Write a letter to your future self (a year from now) what it means for an infinite series $a_{1}+a_{2}+a_{3}+\cdots$. to be convergent and divergent. Write in complete sentences.

If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=5\left(1-\left(\frac{1}{2}\right)^{N}\right)$, evaluate $\sum_{k=1}^{\infty} a_{k}$.
Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.
Answer: $\lim _{N \rightarrow \infty} \sum_{k=1}^{N} a_{k}=\lim _{N \rightarrow \infty} 5-5\left(\frac{1}{2}\right)^{n}=5$. So $\sum_{k=1}^{\infty} a_{k}=5$, so it converges [see also bottom of is 749 (Example 2)]
If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=-5\left(1-2^{N}\right)$, evaluate $\sum_{k=1}^{\infty} a_{k}$.
Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.
Answer: $\lim _{N \rightarrow \infty} \sum_{k=1}^{N} a_{k}=\lim _{N \rightarrow \infty} \underbrace{-5}_{\text {just a number }}+\overbrace{5 \cdot 2^{n}}^{\text {n um }}=\infty$ so $\sum_{k=1}^{\infty} a_{k}$ diverges
What is the Test for Divergence? Sol: statement 7 , bottom of pg 753 Can the Test for Divergence be applied to $\sum_{k=1}^{\infty} \frac{k^{2}}{5 k^{2}+4}$? Sol: Example 10. pg 754 Can the Test for Divergence be applied to $\sum_{k=1}^{\infty} \frac{k}{5 k^{2}+4}$? Sol: Last page, Lecture notes 11.2

Assuming the pattern continues, determine if $5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\cdots$ is a geometric series. If so, determine its ratio.

Sec $l l .3$ Review part I

Info from pg 761: The Integral Test can be applied to a series $\sum_{k=1}^{\infty} a_{k}$ IF:
(1) $a_{k}=f(k)$ for $k=1,2,3, \ldots$
(2) f is continuous, positive, and decreasing on $[1, \infty)$.

* For the series given in Webwork \#1, 2 determine whether the Integral Test can or cannot be applied to the series
* For the series given in Webwork \#4,6 determine whether the Integral Test can or cannot be applied to the series
* For the series given in Webwork \# 7 determine whether the Integral Test can or cannot be applied to the series

Answer: The series all satisfy
the conditions for the Integral Test written above. (Why?) So, YES, the Integral Test can be applied to all of them.

Sec 11.3 Review part II Answer key
Solution for $\sum_{k=1}^{\infty} f(k)$ Step $1:$ (Check whether $\int_{1}^{\infty} f(x) d x$ converges)

$$
\begin{aligned}
\int_{1}^{\infty} f(x) d x & \stackrel{\operatorname{def}}{=} \lim _{t \rightarrow \infty} \int_{1}^{t} f(x) d x \\
& =\lim _{t \rightarrow \infty} 1-\frac{\ln (t)+1}{t} \\
& =1-\lim _{t \rightarrow \infty} \frac{\ln (t)+1}{t} \\
& \left.=1-\lim _{t \rightarrow \infty} \frac{\left(\frac{1}{t}\right)}{1} \quad \text { (by I'Hospital's Rule } \frac{\infty}{\infty}\right) \\
& =1-0
\end{aligned}
$$

Step 2 : Since $\int_{1}^{\infty} f(x) d x$ converges, $\sum_{k=1}^{\infty} f(k)$ also converges by the Integral Test.
Side note: We dort know the actual value for $\sum_{k=1}^{\infty} f(k)$. We just know $\sum_{k=1}^{\infty} f(k)$ is convergent.

Solution for $\sum_{k=4}^{\infty} h(k)$ Step 1: (Check whether $\int_{4}^{\infty} h(x) d x$ converges)

$$
\begin{aligned}
\int_{4}^{\infty} h(x) d x & \stackrel{\text { def }}{=} \lim _{t \rightarrow \infty} \int_{4}^{t} h(x) d x \\
& =\lim _{t \rightarrow \infty} \ln (\ln t)-\ln (\ln 4)
\end{aligned}
$$

$=\infty$ since $\lim _{t \rightarrow \infty} \ln (\ln t)=\infty$ and $\ln (\ln 4)$ is a number
Step 2 : Since $\int_{4}^{\infty} h(x) d x$ diverges,
$\sum_{k=4}^{\infty} h(k)$ also diverges by the Integral Test.
Side note:
Since $h(k)$ is positive for all $k=4,5,6, \ldots$ we write $\sum_{k=4}^{\infty} h(k)=\infty$

