Sec II.1 Review part I Answer key

Sec II.I Review part II

Give an example of a sequence which converges to $\frac{3}{4}$

Possible answers: Exercise 19, pg 744

Give an example of a sequence which converges to 1

Possible answers: Example 4, Example 11 with r=1, Exercise 4, 21, 29(pg 744)

Give an example of a sequence which converges to O

Possible answers: Example 2, Example 6, Example 8, Example 9, Example 11 with r= 1/3, Example 12, Example 13

Give an example of a convergent sequence whose terms are always positive (or o) Possible answers: Example 1(a), Example 4, Example 12

Give an example of a convergent sequence whose terms are sometimes positive (or o) and sometimes negative

Possible answers: Example 1(b), Example 2, Example 8, Example 11 with r=-12

Give an example of a divergent sequence whose terms are always positive

Possible answers: Example 5, Example 11 with r=2, Exercise # 24,25

Give an example of a divergent sequence whose terms are sometimes positive and sometimes negative

Possible answers: Example 7, Exercise 39, Example 11 with r=-2

Find a formula for the general term an of the sequences Answers:

$\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, \dots$	Example 2
$-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots$	Example 1b
$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$	Example 1a

Sec 11.2 Review Answer Key

If $a_1 + a_2 + a_3 + \dots + a_N = 1 - \frac{1}{N+1}$, evaluate $\sum_{k=1}^{\infty} a_k$. Solution. Determine whether $\sum_{k=1}^{\infty} a_k$ converges.	bottom half of Example 8, pg 752
If $a_1 + a_2 + a_3 + \dots + a_N = \frac{2}{7} \left[1 - (0.3)^n \right]$, evaluate $\sum_{k=1}^{\infty} a_k$. Determine whether $\sum_{k=1}^{\infty} a_k$ converges.	solution : Example 5(c) pg 751
Write a letter to your future self (a year from now) what it means for an infinite series $a_1 + a_2 + a_3 + \dots$ to be convergent and divergent. Write in complete sentences	Reference Def 2, 19748
If $a_1 + a_2 + a_3 + \dots + a_N = 5\left(1 - \left(\frac{1}{2}\right)^N\right)$ evaluate $\sum_{k=1}^{\infty} a_k$. Determine whether $\sum_{k=1}^{\infty} a_k$ converges. Answer: $\lim_{N \to \infty} \sum_{k=1}^{N} a_k = \lim_{N \to \infty} 5 - 5\left(\frac{1}{2}\right)^n = 5$. So $\sum_{k=1}^{\infty} a_k = 5$, so it Live also bottom of	CONVEIGES 18 749 (Example 2)]
If $a_1 + a_2 + a_3 + \dots + a_N = -5(1-2^N)$, evaluate $\sum_{k=1}^{\infty} a_k$. Determine whether $\sum_{k=1}^{\infty} a_k$ converges. Answer: $\lim_{N \to \infty} \sum_{k=1}^{N} a_k = \lim_{N \to \infty} -5 + 5 \cdot 2^n = \infty$ So $\sum_{k=1}^{\infty} a_k$ diverge N \to \infty K=1 $\lim_{N \to \infty} \sum_{k=1}^{N} a_k = \lim_{N \to \infty} \sum_{k=1}^{N} a_k$ diverge	<u>s</u>
What is the Test for Divergence? Sol: Statement 7, bott	om of pg 753
Can the Test for Divergence be applied to $\sum_{k=1}^{\infty} \frac{k^2}{5k^2+4}$? Sol: Ex	ample 10, pg 754
Can the Test for Divergence be applied to $\sum_{k=1}^{\infty} \frac{k}{5k^2+4}$? Sol: Lass no	t page, Lecture tes 11.2
Assuming the pattern continues, determine if $5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$ is a geometric series. If so, determine its ratio.	. Sol: Example 3 Pa 750

Pg 750

Sec 11.3 Review part I

Info from pg 761: The Integral Test can be applied to a series $\sum_{k=1}^{\infty} a_k$ IF: () $A_k = f(k)$ for k = 1, 2, 3, ...(2) f is continuous, positive, and decreasing on $[1, \infty)$.

For the series given in Webwork #1,2 determine whether the Integral Test can or cannot be applied to the series * For the series given in Webwork # 4,6 determine whether the Integral Test can or cannot be applied to the series * For the series given in Webwork # 7 determine whether the Integral Test can or cannot be applied to the series

Answer. The series all satisfy the conditions for the Integral Test written above. (Why?) So, YES, the Integral Test can be applied to all of them.

Sec II.3 Review part I Answer key
Solution for
$$\sum_{k=1}^{\infty} f(k)$$
 Step 1: (Check whether $\int_{1}^{\infty} f(x) dx$ converges)
 $\int_{1}^{\infty} f(x) dx \stackrel{def}{=} \lim_{t \to \infty} \int_{1}^{t} f(x) dx$
 $= \lim_{t \to \infty} 1 - \frac{\ln(t)+1}{t}$
 $= 1 - \lim_{t \to \infty} \frac{\ln(t)+1}{t}$
 $= 1 - \lim_{t \to \infty} \frac{\ln(t)}{t}$ (by 1'Hospital's Rule $\frac{\infty}{\infty}$)
 $= 1 - 0$
Step 2: Since $\int_{1}^{\infty} f(x) dx$ converges,
 $\sum_{k=1}^{\infty} f(k)$ also converges by the Integral Test.
Side note: We doit know the actual value for $\sum_{k=1}^{\infty} f(k)$, we just know $\sum_{k=1}^{\infty} f(k)$ is convergent.

Solution for
$$\sum_{k=4}^{\infty} h(k)$$
 Step 1: (Check whether $\int_{4}^{\infty} h \otimes dx$ converges)
 $\int_{4}^{\infty} h(x) dx \stackrel{def}{=} \lim_{t \to \infty} \int_{4}^{t} h(x) dx$
 $= \lim_{t \to \infty} \ln(\ln t) - \ln(\ln 4)$
 $= \infty$ since $\lim_{t \to \infty} \ln(\ln t) = \infty$ and $\ln(\ln 4)$ is a number
Step 2: Since $\int_{4}^{\infty} h(x) dx$ diverges,
 $\sum_{k=4}^{\infty} h(k)$ also diverges by the Integral Test.
Side note:

Since h(k) is positive for all k = 4, 5, 6, ... we write $\sum_{k=4}^{\infty} h(k) = \infty$