Sec 11.1 Review part I

Q1. Suppose $\lim _{n \rightarrow \infty} a_{n}=7$. Select all true statements below.

The sequence $\left\{a_{n}\right\}$ converges to 7
The terms a_{n} approach 7 as n becomes large
We can make a_{n} as close to 7 as we like by choosing a large enough n
The sequence $\left\{a_{n}\right\}$ diverges to 7
The sequence $\left\{a_{n}\right\}$ neither converges nor diverges
$\lim _{n \rightarrow \infty} a_{n}$ exists

Q2. Suppose $\lim _{n \rightarrow \infty} a_{n}=-\infty$. Select all true statements below.

The sequence $\left\{a_{n}\right\}$ converges
$\lim _{n \rightarrow \infty} a_{n}$ does not exist
The sequence $\left\{a_{n}\right\}$ diverges
$\lim _{n \rightarrow \infty} a_{n}$ exists
The sequence $\left\{a_{n}\right\}$ neither converges nor diverges

Sec 11.1 Review part II

Give an example of a sequence which converges to $\frac{3}{6}$
Possible answers: Exercise 19, pg 744
Give an example of a sequence which converges to 1
Possible answers: Example 4, Example I/ with $r=1$, Exercise 4, 21, 29 (p g744)
Give an example of a sequence which converges to 0
Possible answers: Example 2, Example 6, Example 8, Example 9, Example 11 with $r=\frac{1}{3}$, Example 12, Example 13

Give an example of a convergent sequence whose terms are always positive (or o)
Possible answers: Example 1 (a), Example 4, Example 12

Give an example of a convergent sequence whose terms are sometimes positive (or 0) and sometimes negative

Possible answers: Example 1(b), Example 2, Example 8, Example Il with $r=-\frac{1}{2}$

Give an example of a divergent sequence whose terms are always positive
Possible answers: Example 5, Example ll with $r=2$, Exercise \# 24, 25

Give an example of a divergent sequence whose terms are sometimes positive and sometimes negative

Possible answers: Example 7, Exercise 39, Example II with $r=-2$
\qquad
Find a formula for the general term a_{n} of the sequences
Answers:

$$
\begin{align*}
& \frac{3}{5},-\frac{4}{25}, \frac{5}{125},-\frac{6}{625}, \frac{7}{3125}, \ldots \tag{Example 2}\\
& -\frac{2}{3}, \frac{3}{9},-\frac{4}{27}, \frac{5}{81}, \ldots
\end{align*}
$$

Example $1 b$
$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$
Example Ia

Sec 11.2 Review
Copy the question and solution to Example 1, pg 749
If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=1-\frac{1}{N+1}$, evaluate $\sum_{k=1}^{\infty} a_{k}$.
Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.
If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=\frac{2}{7}\left[1-(0.3)^{n}\right]$, evaluate $\sum_{k=1}^{\infty} a_{k}$.
Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.
Write a letter to your future self (a year from now)
what it means for an infinite series $a_{1}+a_{2}+a_{3}+\ldots$ to be convergent and divergent. Write in complete sentences. Def 2, pg 748

If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=5\left(1-\left(\frac{1}{2}\right)^{N}\right)$, evaluate $\sum_{k=1}^{\infty} a_{k}$. Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.

If $a_{1}+a_{2}+a_{3}+\ldots+a_{N}=-5\left(1-2^{N}\right)$, evaluate $\sum_{k=1}^{\infty} a_{k}$.
Determine whether $\sum_{k=1}^{\infty} a_{k}$ converges.

What is the Test for Divergence?
Can the Test for Divergence be applied to $\sum_{k=1}^{\infty} \frac{k^{2}}{5 k^{2}+4}$?
Can the Test for Divergence be applied to $\sum_{k=1}^{\infty} \frac{k}{5 k^{2}+4}$?

Assuming the pattern continues, determine if $5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\cdots$ is a geometric series. If so, determine its ratio.

Sec $l l .3$ Review part I

Info from pg 761: The Integral Test can be applied to a series $\sum_{k=1}^{\infty} a_{k}$ IF:
(1) $a_{k}=f(k)$ for $k=1,2,3, \ldots$
(2) f is continuous, positive, and decreasing on $[1, \infty)$.

* For the series given in Webwork \#1, 2 determine whether the Integral Test can or cannot be applied to the series
* For the series given in Webwork \# 4,6 determine whether the Integral Test can or cannot be applied to the series
* For the series given in Webwork \# 7 determine whether the Integral Test can or cannot be applied to the series

Sec 11.3 Review part II

* Suppose we know that, for a mystery function f,
- f is continuous, positive, and decreasing on $[1, \infty)$
- If $t>1$, then $\int_{1}^{t} f(x) d x=1-\frac{\ln (t)+1}{t}$

Use the Integral Test to determine whether $\sum_{k=1}^{\infty} f(k)$ converges or diverges.

* Suppose we know that, for a mystery function h,
- h is continuous, positive, and decreasing on $[4, \infty)$
- If $t>4$, then $\int_{4}^{t} h(x) d x=\ln (\ln t)-\ln (\ln 4)$

Use the Integral Test to determine whether $\sum_{k=4}^{\infty} h(k)$ converges or diverges.

* Complete the two problems from Lee 11.3 pg 3 without looking at the solution, then again looking at the solution.

