Sec II.1 Review part I

Sec II.I Review part II

Give an example of a sequence which converges to $\frac{3}{4}$

Possible answers: Exercise 19, pg 744

Give an example of a sequence which converges to 1

Possible answers: Example 4, Example 11 with r=1, Exercise 4, 21, 29(pg 744)

Give an example of a sequence which converges to O

Possible answers: Example 2, Example 6, Example 8, Example 9, Example 11 with r= 1/3, Example 12, Example 13

Give an example of a convergent sequence whose terms are always positive (or o) Possible answers: Example 1(a), Example 4, Example 12

Give an example of a convergent sequence whose terms are sometimes positive (or o) and sometimes negative

Possible answers: Example 1(b), Example 2, Example 8, Example 11 with r=-12

Give an example of a divergent sequence whose terms are always positive

Possible answers: Example 5, Example 11 with r=2, Exercise # 24,25

Give an example of a divergent sequence whose terms are sometimes positive and sometimes negative

Possible answers: Example 7, Exercise 39, Example 11 with r=-2

Find a formula for the general term an of the sequences Answers:

$\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, \dots$	Example 2
$-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots$	Example 1b
$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$	Example 1a

Sec 11.2 Review

Copy the question and solution to Example 1, pq 749
If
$$a_1 + a_2 + a_3 + ... + a_N = 1 - \frac{1}{N+1}$$
, evaluate $\sum_{k=1}^{\infty} a_k$.
Determine whether $\sum_{k=1}^{\infty} a_k$ converges.
If $a_1 + a_2 + a_3 + ... + a_N = \frac{2}{7} [1 - (0.3)^n]$, evaluate $\sum_{k=1}^{\infty} a_k$.
Determine whether $\sum_{k=1}^{\infty} a_k$ converges.
Write a letter to your future self (a year from now)
what it means for an infinite series $a_1 + a_2 + a_3 + ...$
to be convergent and divergent. Write in complete sentences.
If $a_1 + a_2 + a_3 + ... + a_N = 5 (1 - (\frac{1}{2})^N)$, evaluate $\sum_{k=1}^{\infty} a_k$.
Determine whether $\sum_{k=1}^{\infty} a_k$ converges.

If
$$a_1 + a_2 + a_3 + \dots + a_N = -5(1-2^N)$$
, evaluate $\sum_{k=1}^{\infty} a_k$.
Determine whether $\sum_{k=1}^{\infty} a_k$ converges.

What is the Test for Divergence ?

Can the Test for Divergence be applied to
$$\sum_{k=1}^{\infty} \frac{k^2}{5k^2+4}$$
?

Can the Test for Divergence be applied to $\sum_{k=1}^{\infty} \frac{k}{5k^2+4}$?

Assuming the pattern continues, determine if $5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$ is a geometric series. If so, determine its ratio.

Sec 11.3 Review part I

Info from pg 761: The Integral Test can be applied to a series $\sum_{k=1}^{\infty} a_k$ IF: () $A_k = f(k)$ for k = 1, 2, 3, ...(2) f is continuous, positive, and decreasing on $[1, \infty)$.

For the series given in Webwork #1,2 determine whether the Integral Test can or cannot be applied to the series * For the series given in Webwork # 4,6 determine whether the Integral Test can or cannot be applied to the series * For the series given in Webwork # 7 determine whether the Integral Test can or cannot be applied to the series

Sec 11.3 Review part II

K Suppose we know that, for a mystery function
$$f$$
,
• f is continuous, positive, and decreasing on $[1,\infty)$
• $|f t > 1$, then $\int_{1}^{t} f(x) dx = 1 - \frac{ln(t)+1}{t}$
Use the Integral Test to determine whether $\sum_{k=1}^{\infty} f(k)$
converges or diverges.

If Suppose we know that, for a mystery function h,

• h is continuous, positive, and decreasing on
$$[4, \infty)$$

• If $t > 4$, then $\int_{4}^{t} h \omega dx = ln(ln t) - ln(ln 4)$
Use the Integral Test to determine whether $\sum_{k=4}^{\infty} hC_k$
converges or diverges.