Math 2924 Sec 7.1-7.5 Review
\# 1
Strategy:
seeing $\sqrt{\text { polynomial, }}$
try
Rationalizing
Substitution
Sec 7.4

Strategy:

$$
\int_{1}^{4} e^{\sqrt{x}} d x
$$

- Seeing $\sqrt{\text { polynomial }}$
try sub $\omega=\sqrt{\text { polynomial }}$
- Seeing product of exponential function and a polynomial, try integration by parts

$$
\int \sin (\sqrt{x}) d x
$$

Strategy:

- Seeing $\sqrt{\text { polynomial }}$ try sub $u=\sqrt{\text { polynomial }}$
- Seeing product of trig function and a polynomial, try integration by parts
$\# 4 \quad \int_{0}^{2} \frac{1}{\sqrt{16+x^{2}}} d x$ hint: $\frac{d}{d x} \ln |\sec (x)+\tan (x)|=\sec (x)$

Strategy: Seeing $\left(a^{2}+(b x)^{2}\right)^{n}$, do trig substitution with

$$
\int_{1}^{\sqrt{3}} \arctan (1 / x) d x
$$

Strategy: Seeing inverse functions of familiar functions
like \ln, arccos, arsine, try integration by parts with $d v=d x$

$$
\int x \sqrt{1-x^{4}} d x
$$

strategy:

- Because you see $1-x^{4}$ and x, try u-substitution
- Seeing $\sqrt{a^{2}-(b u)^{2}}$, do trig substitution with

\#7 $\int x^{3}\left[\cos \left(x^{4}\right)\right]^{3}\left[\sin \left(x^{4}\right)\right]^{2} d x$

Strategy:

- Seeing x^{4} and x^{3}, try u-substitution
- Seeing $[\cos (u)]^{n}[\sin (u)]^{m}$,
know that strategies in Sec 7.2 will work.
Since $\cos (u)$ has odd power, save one factor of $\cos (u)$ and apply $(\cos (u))^{2}=1-(\sin (u))^{2}$
$\# 8 \int x^{2} \ln (1+x) d x$

Strategy:

- Seeing a product of a polynomial and \ln, try integration by parts
- The result is a rational function a polynomial $\frac{\text { another polynomial }}{\text { - }}$ Any rational function can be integrated using techniques from sec 7.4.

