The Indeterminate Forms Family (from Sec 4.4 p305)

$$\frac{0}{0}$$
,  $\frac{\infty}{\infty}$  and  $0 \cdot \infty$  are indeterminate forms.

L'Hopital's Rule for  $\frac{0}{0}$ 

Suppose f and g are differentiable on an open interval I containing a with  $g'(x) \neq 0$  on I when  $x \neq a$ . If  $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ , then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided the limit on the right side exists.

The rule also applies if  $x \to a$  is replaced by  $x \to \pm \infty$ ,  $x \to a^+$  or  $x \to a^-$ .

**Caution** 

- L'Hopital's Rule is **NOT** Quotient Rule.
- You must get the indeterminate form to apply L'Hopital's Rule.

Example:

Evaluate 
$$\lim_{x \to -1} \frac{x^3 - 4x^2 - 11x - 6}{x^3 + 8x^2 + 13x + 6}$$
.

[Solution]

$$\lim_{x \to -1} \frac{x^3 - 4x^2 - 11x - 6}{x^3 + 8x^2 + 13x + 6}, \text{ an Indeterminate Form } \frac{0}{0}$$

$$= \lim_{x \to -1} \frac{3x^2 - 8x - 11}{3x^2 + 16x + 13}, \text{ an Indeterminate Form } \frac{0}{0}$$

$$= \lim_{x \to -1} \frac{6x - 8}{6x + 16}$$

$$= \frac{-6 - 8}{-6 + 16}$$

$$= -\frac{7}{5}$$

L'Hopital's Rule for 
$$\frac{\infty}{\infty}$$

Suppose f and g are differentiable on an open interval I containing a with  $g'(x) \neq 0$  on I when  $x \neq a$ . If  $\lim_{x \to a} f(x) = \pm \infty$  and  $\lim_{x \to a} g(x) = \pm \infty$ , then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Provided the limit on the right side exists.

The rule also applies if  $x \to a$  is replaced by  $x \to \pm \infty$ ,  $x \to a^+$  or  $x \to a^-$ .

### Example:

Evaluate 
$$\lim_{x \to \infty} \frac{16x^2 - 8x - 6}{18x^2 - 6x + 8}$$
.

#### [Solution]

$$\lim_{x \to \infty} \frac{16x^2 - 8x - 6}{18x^2 - 6x + 8}, \text{ an Indeterminate Form } \frac{\infty}{\infty}$$

$$= \lim_{x \to \infty} \frac{32x - 8}{36x - 6}, \text{ an Indeterminate Form } \frac{\infty}{\infty}$$

$$= \lim_{x \to \infty} \frac{32}{36}$$

$$= \frac{8}{9}$$

# L'Hopital's Rule for $0.\infty$

If we are asked to evaluate

$$\lim_{x\to a} f(x)g(x),$$

where  $\lim_{x\to a} f(x) = 0$  and  $\lim_{x\to a} g(x) = \pm \infty$ .

WE CANNOT APPLY L'HOPITAL'S RULE DIRECTLY.

We need to use algebra to get either  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$ .

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} \frac{f(x)g(x)}{1}$$

$$= \lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}}, \text{ an Indeterminate Form } \frac{0}{0}$$

**OR** 

$$= \lim_{x \to a} \frac{g(x)}{\frac{1}{f(x)}}, \text{ an Indeterminate Form } \frac{\infty}{\infty}$$

### Example:

Evaluate 
$$\lim_{x \to \infty} \left[ x \sin\left(\frac{16}{x}\right) \right]$$
.

# [Solution]

$$\lim_{x \to \infty} \left[ x \sin\left(\frac{16}{x}\right) \right]$$

$$= \lim_{x \to \infty} \left[ \frac{\sin\left(\frac{16}{x}\right)}{\frac{1}{x}} \right], \text{ an Indeterminate Form } \frac{0}{0}$$

$$= \lim_{x \to \infty} \left[ \frac{\cos\left(\frac{16}{x}\right) \cdot \left(\frac{-16}{x^2}\right)}{\frac{-1}{x^2}} \right]$$

$$= \lim_{x \to \infty} \left[ 16 \cos\left(\frac{16}{x}\right) \right]$$

$$= 16$$

The Indeterminate Forms Family (in Sec 4.4 page 310)

The **indeterminate forms**  $1^{\infty}$ ,  $0^{0}$  and  $\infty^{0}$  all arise in limits of the form

$$\lim_{x\to a} f(x)^{g(x)}.$$

## Procedure

Suppose  $\lim_{x\to a} f(x)^{g(x)}$  has the indeterminate form  $1^{\infty}$ ,  $0^{0}$  or  $\infty^{0}$ .

- Let  $y = f(x)^{g(x)}$ . Then  $\ln y = g(x) \ln f(x)$ .
- Evaluate  $\lim_{x\to a} \ln y$ . This limit can be put in the form  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$ , both of which are handled by L'Hôpital's Rule.
- Then  $\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} y = \lim_{x \to a} e^{\ln y} = e^{\lim_{x \to a} \ln y}$ .

**Useful Information about Natural Logarithmic Function** 



- $\lim_{x \to 0^+} \ln x = -\infty$ .  $\lim_{x \to 1} \ln x = 0$ .  $\lim_{x \to \infty} \ln x = \infty$ .
- $\frac{d}{dx} \ln f(x) = \frac{1}{f(x)} \cdot f'(x)$ .

Example: Evaluate  $\lim_{x\to 0} (1+4x)^{\frac{3}{x}}$ .

# [Solution]

 $\lim_{x\to 0} (1+4x)^{\frac{3}{x}} \text{ is an Indeterminate Form } 1^{\infty}.$ 

Let 
$$y = (1+4x)^{\frac{3}{x}}$$
,

then 
$$\ln y = \ln(1+4x)^{\frac{3}{x}}$$

$$= \frac{3}{x} \cdot \ln(1+4x)$$

$$= \frac{3\ln(1+4x)}{x}$$

 $\lim_{x\to 0} \ln y = \lim_{x\to 0} \frac{3\ln\left(1+4x\right)}{x}, \text{ an Indeterminate Form } \frac{0}{0}, \text{ so L'Hôpital's Rule applies}$ 

$$= \lim_{x \to 0} \frac{3 \cdot \frac{1}{1 + 4x} \cdot 4}{1} = 12.$$

Therefore, 
$$\lim_{x \to 0} (1+4x)^{\frac{3}{x}} = \lim_{x \to 0} y$$
$$= \lim_{x \to 0} e^{\ln y}$$
$$= e^{\lim_{x \to 0} \ln y}$$
$$= e^{12}.$$

 $\lim_{x \to \infty} \left( 1 + \frac{2}{x} \right)^x$ Example: Evaluate

Example:

Evaluate  $\lim_{x\to 0^+} (\sin x)^{\tan x}$ .

#### [Solution]

 $\lim_{x\to 0^+} (\sin x)^{\tan x}$  is an Indeterminate Form  $0^0$ .

Let 
$$y = (\sin x)^{\tan x}$$
,

then 
$$\ln y = \ln(\sin x)^{\tan x}$$
  
=  $\tan x \cdot \ln(\sin x)$ 

Suppose that we write  $\tan x \cdot \ln(\sin x)$  as  $\frac{\sin x \cdot \ln(\sin x)}{\cos x}$ .

 $\lim_{x\to 0^+} \frac{\sin x \cdot \ln(\sin x)}{\cos x} \text{ is an Indeterminate Form } 0 \cdot (-\infty),$ 

we cannot apply L'Hôpital's Rule.

Therefore, write  $\tan x \cdot \ln(\sin x)$  as  $\frac{\ln(\sin x)}{\cot x}$ .

 $\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{\ln(\sin x)}{\cot x}, \text{ an Indeterminate Form } \frac{-\infty}{\infty}, \text{ so L'Hôpital's Rule applies}$  $= \lim_{x \to 0^{+}} \frac{\frac{1}{\sin x} \cdot \cos x}{-\csc^{2} x}$  $= \lim_{x \to 0^+} \left( -\sin x \cos x \right)$ 

Therefore, 
$$\lim_{x \to 0^+} (\sin x)^{\tan x} = \lim_{x \to 0^+} \ln y$$
$$= \lim_{x \to 0^+} e^{\ln y}$$
$$= e^{\lim_{x \to 0^+} \ln y}$$
$$= e^0$$
$$= 1.$$

=0.