Section 11.3 Part 1

The Integral Test

Example:

Suppose f(x) is a continuous and positive function on $[1,\infty)$.

a. Use the **<u>Right Endpoint Rule</u>** with n = 5 to approximate the integral $\int_{1}^{6} f(x) dx$.

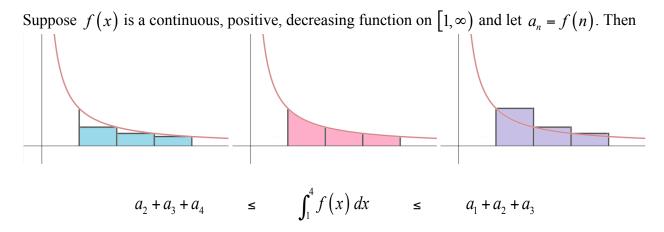
b. Use the **Left Endpoint Rule** with n = 5 to approximate the integral $\int_{1}^{6} f(x) dx$.

c. Suppose f(x) is **decreasing**, then (fill in <, = or \ge) the estimated value in part (a) _____ the value of $\int_{1}^{6} f(x) dx$ and the estimated value in part (b) _____ the value of $\int_{1}^{6} f(x) dx$.

Answer on the next page (don't go to the next page yet)

Section 11.3 Part 1

Integral Test



In general,

$$\sum_{k=2}^{n} a_k \leq \int_1^n f(x) \, dx \leq \sum_{k=1}^{n-1} a_k$$

The Integral Test

Suppose f is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n = f(n)$. Then

- If $\int_{1}^{\infty} f(x) dx$ is **convergent**, then $\sum_{n=1}^{\infty} a_n$ is
- If $\int_{1}^{\infty} f(x) dx$ is **divergent**, then $\sum_{n=1}^{\infty} a_n$ is

When we use the Integral Test

- It is not necessary to start the series or the integral at n = 1. For example, in testing the series $\sum_{n=4}^{\infty} \frac{1}{(n-3)^2}$ we can use $\int_{4}^{\infty} \frac{1}{(x-3)^2} dx$.
- It is not necessary that f be always decreasing. What is important is that f be

ultimately decreasing. That is, decreasing on $[N,\infty)$ for some number N. Then $\sum_{n=N-1}^{\infty} a_n$ is

convergent, which means $\sum_{n=1}^{\infty} a_n$ is convergent.

We should **NOT** infer from the Integral Test that the sum of the series is equal to the value of the integral. In general,

$$\sum_{n=1}^{\infty} a_n \neq \int_1^{\infty} f(x) \, dx.$$

Useful Fact

- 1. A **continuous** function is continuous at every point on its **domain**.
 - Polynomials/Root functions/Trig functions/Exponential functions/Log functions are continuous functions.
 - If f and g are continuous at a, then $\frac{f}{g}$ is continuous at a provided $g \neq 0$.

2. If f'(x) < 0 on the interval (a,b), then f(x) is **decreasing** on the interval (a,b).

Example: Use the **Integral Test** to determine the convergence or divergence of the series

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

Section 11.3 Part 1

The Integral Test

Proof of the p-series test

Consider the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$. If p < 0, then $\lim_{n \to \infty} \frac{1}{n^p} = \infty$. If p = 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 1$. In either case, $\lim_{n \to \infty} \frac{1}{n^p} \neq 0$, so the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges by the Divergence Test. If p > 0, then the function $f(x) = \frac{1}{x^p}$ is continuous, positive and decreasing on $[1, \infty)$. We showed earlier (Sec 7.8 part 1 notes): $\int_{1}^{\infty} \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$. Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if 0 by the Integral Test.

p-series

The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if

and divergent if

Practice/Review:

Determine whether the series $\sum_{k=1}^{\infty} k^{-\frac{3}{4}}$ converges or diverges.

Practice/Review:

Determine whether the series $\sum_{k=4}^{\infty} \frac{1}{(k-1)^{\sqrt{2}}}$ converges or diverges.

<u>Practice/Review</u>: Which of the following is a convergent *p*-series?

A.)
$$\sum_{k=1}^{\infty} \frac{3}{2^k}$$
 B.) $\sum_{k=1}^{\infty} \frac{3}{\left(\frac{1}{2}\right)^k}$ C.) $\sum_{k=1}^{\infty} \frac{3}{k^2}$ D.) $\sum_{k=1}^{\infty} \frac{3}{k^{\frac{1}{2}}}$

Strategy
Assume $\sum_{n=1}^{\infty} a_n$ is an infinite series with $a_n > 0$ for all n .
 Check if it is a Geometric Series. No! Go to (2).
Yes! If $r \ge 1$ or $r \le -1$, then the series diverges. If $-1 < r < 1$, then $S = \frac{a_1}{1-r}$.
2. Check if it is a <i>p</i> -Series.
No! Go to (3). Yes! If $p \le 1$, then the series diverges. If $p > 1$, then the series converges.
3. Check if $\lim_{k \to \infty} a_k = 0$. (L'Hôpital's Rule is used if necessary)
Yes! Then the test is inconclusive. Go to (4). No! Then the series diverges by the Divergence Test .
 Check if it is a Telescoping Series. No! Go to (5).
Yes! Evaluate S_n by cancelling middle terms (Partial Fraction Decomposition is used if
necessary) and $S = \lim_{n \to \infty} S_n$.
5. Use the following Tests:
The Limit Comparison Test / The Comparison Test. The Ratio Test.
The Integral Test. (when a_n is "easy to integrate")

EXAMPLE: Determine whether the following series converge or diverge using any method.

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)}$$

Copy <u>Example 4</u> from the book (pg 722): You've learned how to prove the divergence of

$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

using the Limit Comparison Test (see <u>https://egunawan.github.io/fall18/notes/notes11_4practice_key.pdf</u>). Follow Example 4 in proving its divergence using the Integral Test.

Extra exam practice questions:

Use any method to determine whether the following series converge or diverge.

a)
$$\sum_{n=1}^{\infty} \frac{1}{(\ln 2)^n}$$

b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n+1}$$

c)
$$\sum_{n=1}^{\infty} \frac{2}{n\sqrt{n}}$$

d)
$$\sum_{n=1}^{\infty} \ln\left(\frac{n+1}{n}\right)$$