Name : _____

<u>Recall</u>

Reverse Chain Rule to get Substitution Rule.

$$\frac{d}{dx} \left[f(g(x)) \right] = f'(g(x))g'(x)$$
$$\int f'(g(x))g'(x) \, dx = f(g(x)) + C$$

Let u = g(x), then du = g'(x)dx. Thus

$$\int f'(g(x))g'(x) \, dx = \int f'(u) \, du = f(u) + C = f(g(x)) + C.$$

Integration by Parts

Reverse **Product Rule** to get **Integration by Parts**.

$$\frac{d}{dx} [u(x)v(x)] = u'(x)v(x) + u(x)v'(x)$$
$$\int u'(x)v(x) dx + \int u(x)v'(x) dx = u(x)v(x) + C$$
$$\int u(x)v'(x) dx = u(x)v(x) - \int u'(x)v(x) dx$$

Since $\frac{dv}{dx} = v'(x)$ and $\frac{du}{dx} = u'(x)$, we can obtain

$$\int u \, dv = uv - \int v \, du.$$

Integration by Parts

Suppose that u and v are differentiable functions. Then,

$$\int u \, dv = uv - \int v \, du.$$

Integration by Parts is an integration technique for evaluating integrals of **product of functions**.

Integration by Parts

To use Integration by Parts, one should

- Choose *u* and *dv*. Note: *dv* should be easy to integrate.
- Evaluate du and v.
- Apply the formula.

Integration by Parts for Definite Integrals

Let u and v be differentiable. Then,

$$\int_a^b u \, dv = uv \Big|_a^b - \int_a^b v \, du.$$

<u>**TASK 1**</u>: First attempt on your own. Then follow pg 473, Sec 7.1 Ex 2 to evaluate the indefinite integral. Compute the definite integral on your own. Check your answer with WolframAlpha. Evaluate $\int_{1}^{e} \ln x \, dx$.

Recall

Integration by Parts

Suppose that u and v are differentiable functions. Then,

$$\int u \, dv = uv - \int v \, du.$$

Repeated Use of Integration by Parts

[Type 1] Use Integration by Parts <u>AGAIN</u>.

<u>**TASK 2**</u>: First attempt on your own. This requires multiple applications of integration by parts. Then follow the solution given on pg 474 Sec 7.1 Example 3.

Evaluate $\int x^2 e^x dx$.

[Type 2] Use Integration by Parts AGAIN + <u>MERGE</u>.

<u>**TASK 3**</u>: First attempt on your own (it does take multiple steps using Calc II methods). Then follow the solution given on pg 474 Sec 7.1 Ex 4. Evaluate $\int e^x \sin x \, dx$.

Products of tangent (even power) and secant (odd power) - u-sub doesn't work.

<u>TASK 4</u>: Evaluate the antiderivative of $(\sec^3 x)$ on your own and by copying pg 483 Sec 7.2 Ex 8. Hint: You've already evaluated the antiderivative for $(\sec x)$ in your last reading homework: <u>https://egunawan.github.io/fall18/notes/notes7_2part2.pdf</u> or you can look this up at the top of page 483 or exam fact sheet.

Complete problems 1-6. Show all your work. You may use hints and any technology/sources/people.

1. Evaluate $\int \ln(x + \sqrt{1 + x^2}) dx$.

[Solution]

Hint: Integration by parts. You have no choice but to let $u = \ln\left(x + \sqrt{1 + x^2}\right)$ and dv = dx. $\int \ln\left(x + \sqrt{1 + x^2}\right) dx = x \ln\left(x + \sqrt{1 + x^2}\right) - \int \frac{x}{\sqrt{1 + x^2}} dx$ To solve the right-most integral, do substitution $w = 1 + x^2$. Get $\int \ln\left(x + \sqrt{1 + x^2}\right) dx = x \ln\left(x + \sqrt{1 + x^2}\right) - \sqrt{1 + x^2} + C$ 2. Evaluate $\int x \tan^2 x \, dx$.

[Solution]

Use trig identity to get
$$\int x \tan^2 x \, dx = \int x (\sec^2 x - 1) \, dx$$

$$= \int x \sec^2 x \, dx - \int x \, dx$$
Use integration by parts to get $\int x \sec^2 x \, dx = x \tan x - \int \tan x \, dx$

$$= x \tan x - \int \frac{\sin x}{\cos x} \, dx$$

Evaluate $\int \frac{\sin x}{\cos x} dx$ by substitution (let $w = \cos x$, then $dw = -\sin x dx$.)

$$\int x \tan^2 x \, dx = \int x \sec^2 x \, dx - \int x \, dx$$
$$= x \tan x + \ln|\cos x| - \frac{1}{2}x^2 + C$$

3. Evaluate $\int \cos \sqrt{x} \, dx$

[Solution]

Substitute $w = \sqrt{x}$ and $dw = \frac{1}{2\sqrt{x}} dx$ to get $\int \cos \sqrt{x} dx = 2 \int w \cos w dw$ Use integration by parts to get $\int w \cos w dw = w \sin w - \int \sin w dw$ $= w \sin w + \cos w + c$ $\int \cos \sqrt{x} dx = 2 [\operatorname{sqrt}(x) \sin (\operatorname{sqrt}(x) + \cos (\operatorname{sqrt}(x)))] + C$ 4. Evaluate $\int x^2 (\ln x)^2 dx$.

[Solution]

Use integration by parts to get $\int x^2 (\ln x)^2 dx = \frac{1}{3}x^3 (\ln x)^2 - \frac{2}{3}\int x^2 \ln x dx$ Use integration by parts to get $\int x^2 \ln x dx = \frac{1}{3}x^3 \ln x - \frac{1}{3}\int x^2 dx$ Therefore, $\int x^2 (\ln x)^2 dx = \frac{1}{3}x^3 (\ln x)^2 - \frac{2}{3}\int x^2 \ln x dx$ $= \frac{1}{3}x^3 (\ln x)^2 - \frac{2}{9}x^3 \ln x + \frac{2}{27}x^3 + C$

5. Consider the graph of the function $f(x) = \sin^{-1} x$. Let *R* be the region bounded by y = f(x) and *x*-axis on the interval [0,1].

Evaluate the **area** of R.

[Solution]

Let $u = \sin^{-1} x$ and dv = dx, then $du = \frac{1}{\sqrt{1 - x^2}} dx$ (verify this is by doing integration by inverse trig substitution). Therefore, $\int \sin^{-1} x \, dx = x \sin^{-1} x - \int \frac{x}{\sqrt{1 - x^2}} dx$ by above explanation $= x \sin^{-1} x + \sqrt{1 - x^2} + C$ by using substitution $w = 1 - x^2$ The area is $A = \int_0^1 \sin^{-1} x \, dx$ $= \frac{\pi}{2} - 1$

6. Evaluate $\int \cos(\ln x) dx$. (Hint: the same strategy as Sec 7.1 Ex 4 on pg 474-475.)

[Solution]

Use integration by parts (no choice but to let $u = \cos(\ln x)$ and dv = dx), and get $\int \cos(\ln x) dx = x \cos(\ln x) + \int \sin(\ln x) dx$ Use integration by parts again to evaluate $\int \sin(\ln x) dx$ Combine the two $\int \cos(\ln x) dx$. See Sec 7.1 Example 4 on page 474-475. Get $\int \cos(\ln x) dx = \frac{x \cos(\ln x) + x \sin(\ln x)}{2} + C$

- 7. Complete part (a) and at least **ONE** of parts (b)-(f).
- a) To derive the formula for Integration by Parts we used which of the following theorems?
 - i. The Fundamental Theorem of Calculus.
 - ii. The Product Rule of Differentiation.
 - iii. The Chain Rule of Differentiation.
- iv. The Mean Value Theorem
- b) Evaluate $\int_{0}^{\frac{\pi}{2}} x \cos 2x \, dx$. Hint: integration by parts.
- c) Suppose that f(1) = 2, f(4) = 7, f'(1) = 5, f'(4) = 3 and f'' is continuous. Evaluate $\int_{1}^{4} x f''(x) dx$.
- d) Evaluate $\int \tan^{-1} x \, dx$.
- e) Evaluate $\int e^x \cos x \, dx$.
- f) A particle that moves along a straight line has velocity $v(t) = t^3 e^{-t}$ meters per second after *t* seconds. How far will it travel during the first *t* seconds?