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I Multiplication and Division of Power Series

lf power series are added or subtracted, they behave llke polynomials (Theorem 11.2.8
shows this). In fact, as the following example illustrates, they can also be multiplied and
divided like polynomials. We find only the first few terms because the calculations for
the later terms become tedious and the initial terms are the most important ones.

EXAMPLE 13 Find the first three nonzero terms in the Maclaurin series for (a) e* sin x
and (b) tan x.

SOLUTION
(a) Using the Maclaurin series for ¢* and sin x in Table 1, we have
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We multiply these expressions, collecting like terms just as for polynomials:
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Thus e'sinx=x+ x> +3x + ...

(b) Using the Maclaurin series in Table 1, we have

X X
sin x 3! 5!
tan x = = , n
cos x | XX
2! !
We use a procedure like long division:
1.3 2.5
x+3x’ + x4
— 12 L4 N 3 5
| 2X +24X )/\—éx +T%Bx—
x =i+ 45—
i — x4+
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Thus tanx =x +3x° + 5x7 + - ]

Although we have not attempted to justify the formal manipulations used in Exam-
ple 13, they are legitimate. There is a theorem which states that if both f(x) = = ¢,x"
and g(x) = = b,x" converge for | x| < R and the series are multiplied as if they were
polynomials, then the resulting series also converges for | x| << R and represents f(x)g(x).
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