Math 1152Q: Fall '17 Week 8 Sample Quiz

Summary: 11.3: Integral test and p-series concepts; 11.8: using geometric series test or ratio test to find the interval of convergence of a series; 11.9: find a power series representation of a function and determining the radius of convergence.

- 1. (Section 11.3 concept)
 - (a) Suppose f is a continuous, positive, and decreasing function on $[1, \infty)$ and $a_k = f(k)$. By drawing a picture, rank the following three quantities in increasing order:

$$\int_{1}^{6} f(x) \, \mathrm{dx} \qquad \sum_{k=1}^{5} a_{k} \qquad \sum_{k=2}^{6} a_{k}$$

(b) For each statement, determine whether it's true or false and give a brief justification:

6.
$$\int_{5} \frac{1}{x^2} dx = 5$$

(Answer: see Sec 11.3, page 722)

(c) Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing function for $x \ge N$. Suppose $\sum_{n=1}^{\infty} a_k = S$. Let $S_N := a_1 + a_2 + \dots + a_N$.

Which error estimate gives the more accurate approximation?

1.
$$\int_{n+1}^{\infty} f(x) \, \mathrm{dx} \le S - S_N \le \int_n^{\infty} f(x) \, \mathrm{dx}$$

2.
$$S_N + \int_{n+1}^{\infty} f(x) \, \mathrm{dx} \le S \le S_N + \int_n^{\infty} f(x) \, \mathrm{dx}$$

(Answer: see Sec 11.3, page 724)

- (d) Is the following statement true or false? Justify. (See answer at the end of the file). Suppose f(x) is a continuous function defined on $[5, \infty)$. If f(x) is not bounded on $[5, \infty)$, we cannot apply the integral test using $\int_{-\infty}^{\infty} f(x) \, dx$.
- 2. (Sec 11.3 more p-series questions)

(Note: the symbol ζ is the lower-case Greek letter which is pronounced "zeta" in English). The *Riemann zeta*-function ζ is defined by

$$\zeta(x) := \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

It is used in number theory to study the distribution of prime numbers.

- (a) What is the domain of the function ζ ? (That is, for what values of x is this function defined?) (Hint: go to Sec 11.3, page 722)
- (b) Euler computed $\zeta(2)$ to be $\frac{\pi^2}{6}$. (See page 720, sec 11.3). Use this fact to find the sum of each series below.

$$\sum_{n=3}^{\infty} \frac{1}{n^2} \qquad \sum_{n=1}^{\infty} \frac{1}{(5n)^2} \qquad \sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$

- 3. (Section 11.8 power series)
 - (a) What is a power series? (See Sec 11.8, top of page 747)
 - (b) What is the radius of convergence of a power series? (There are three cases. See Sec 11.8, top of page 749)
 - (c) In most cases, how do you find the radius of convergence of a power series? (See the test used in Examples 1-5 in Sec 11.8, pg 747-750)
 - (d) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}.$$
 Answer: see Example 5, pg 750.

(e) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=0}^{\infty} n! x^{2n}.$$
 Answer: see Example 1, pg 747.

(f) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{n^5}.$$
 Answer: same radius of convergence as Example 2, pg 747, but both endpoints are included.

(g) Find the radius of convergence and interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{n!}.$$
 Answer: same answer as Example 3, pg 748.

4. (Sec 11.9 WebAssign finding interval of convergence) For each function, find a power series representation and determine the interval of convergence.

(Check your work with WolframAlpha. Type "series representation of ...")

(a)
$$f(x) = \frac{1}{3+x}$$
 (see Sec 11.9 Example 2)
(b) $f(x) = \frac{x^3}{5+x}$ (see Sec 11.9 Example 3)
(c) $f(x) = \frac{x}{1+10x^2}$ (a variation of Sec 11.9 Example 3)

- 5. (Sec 11.9 WebAssign differentiation and integration of power series) For each function, find a power series representation. Determine the radius of convergence. (You do not need to determine the interval of convergence only the radius of converge because of Note 2 pg 754).
 - (a) $f(x) = \frac{1}{(2+x)^2}$ (a variation of Sec 11.9 Example 5)
 - (b) $f(x) = \ln(1+x)$ (see Sec 11.9, Example 6)
 - (c) $f(x) = \arctan(x)$ (see Sec 11.9, Example 7)
 - (d) $\int \frac{1}{1+x^7} dx$ (see Sec 11.9, Example 8) (e) $\int \frac{x}{1-x^7} dx$ (a variation Sec 11.9, Example 8)
- 6. (a couple answers)
 - Answer to 1(d) is True. Justification: If g(x) is positive and decreasing on $[5, \infty)$, then it is bounded (for example, bounded below by 0 and bounded above by g(5)). The contrapositive of this statement is: If g(x) is not bounded, then it is not positive or not decreasing. Since g(x) does not meet at least one of the criteria for applying the integral test using $\int_{5}^{\infty} g(x) \, dx$, we cannot apply the integral test using $\int_{5}^{\infty} g(x) \, dx$.

• Answer to 3(c): ratio test usually works.