Name (please print): KEY

You may use the fact that

$$\lim_{x \to \infty} \left(\frac{x+1}{x}\right)^x = e \quad \text{and} \quad \lim_{x \to \infty} \left(\frac{x}{x+1}\right)^x = \frac{1}{e}$$

without explanation. Note that the first few digits of e are 2.718.

1. (a) Complete the statement of the *ratio* test:

Suppose a_n is a positive number for all $n \ge 1$.

ANSWER: copy from Sec 11.6. Don't forget to include $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ in your statement. (b) Please circle **ONE** series that you want to work with:

$$\sum \frac{5^n}{n!}$$
 or $\sum \frac{n!}{n^n}$ (similar to Sec 11.6 Example 5 pg 741).

(c) Show your work for attempting to use the ratio test to this series to determine whether it converges or diverges.

For
$$a_n = \frac{5^n}{n!}$$
:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{5^{n+1}}{(n+1)!} \frac{n!}{5^n}$$

$$= \lim_{n \to \infty} \frac{5}{n+1}$$

$$= \lim_{n \to \infty} \frac{\frac{5}{n}}{1+\frac{1}{n}}$$

$$= \frac{\lim_{n \to \infty} \frac{5}{n}}{1+\lim_{n \to \infty} \frac{1}{n}}$$

$$= 0.$$

For
$$a_n = \frac{n!}{n^n}$$
:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)!}{(n+1)^{(n+1)}} \frac{n^n}{n!}$$

$$= \lim_{n \to \infty} (n+1) \frac{n^n}{(n+1)^{(n+1)}}$$

$$= \lim_{n \to \infty} (n+1) \frac{n^n}{(n+1)^n (n+1)}$$

$$= \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n$$

$$= \frac{1}{e} \text{ as given at the top of the page}$$

See also book's solution for a similar-looking series Sec 11.6 Example 5 pg 741.

(d) If the ratio test is conclusive, determine whether the series is convergent or divergent. Otherwise, state that the ratio test is inconclusive.

The two series converge by the ratio test since 0 < 1 and $\frac{1}{e} < 1$.

2. Please *circle* **ONE** series below to work with:

$$\sum_{n=1}^{\infty} \frac{\ln n}{n} \quad \text{or} \quad \sum_{n=4}^{\infty} \frac{1}{2^n - 9} \text{ (from Sec 11.4 Examples 2 and 3).}$$

Try Divergence Test: Both $\frac{\ln n}{n}$ and $\frac{1}{2^n-9}$ converge to 0. So the Divergence Test is inconclusive.

Try Ratio test:

For $a_n = \frac{\ln n}{n}$: you know that ratio tests will be *inconclusive* for terms involving only constants, log, and polynomials. See first page of "growth rates" notes: https://egunawan.github.io/fall17/notes/notes11_6part3key.pdf

For $a_n = \frac{1}{2^n - 9}$:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2^n - 9}{2^{n+1} - 9}$$
$$\stackrel{L}{=} \lim_{n \to \infty} \frac{\ln 2 \ 2^n}{\ln 2 \ 2^{n+1}}$$
$$= \frac{1}{2} < 1.$$

By the ratio test, $\sum_{n=4}^{\infty} \frac{1}{2^n-9}$ converges.

Try Limit Comparison Test (LCT): For $a_n = \frac{\ln n}{n}$: Try $b_n = \frac{1}{n}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\ln n}{n} \frac{n}{1}$$
$$= \lim_{n \to \infty} \ln n = \infty.$$

Since $\sum b_n$ diverges by the harmonic series test (*p*-series test), by the Limit Comparison Test, we conclude that $\sum a_n$ also diverges. (See also book's solution using Comparison Test. Sec 11.4 Example 2 pg 728-729.)

For
$$a_n = \frac{1}{2^n - 9}$$
: Try $b_n = \frac{1}{2^n}$
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{2^n - 9} \frac{2^n}{1}$$
$$= \lim_{n \to \infty} \frac{2^n}{2^n - 9}$$
$$= \lim_{n \to \infty} \frac{1}{1 - \frac{9}{2^n}}$$
$$= \frac{1}{1 - \lim_{n \to \infty} \frac{9}{2^n}} = 1$$

We know that $\sum b_n$ converges by the geometric series test (or you can show this using the ratio test or root test). So, by the Limit Comparison test, we conclude that $\sum a_n$ also diverges. (Warning: if $\lim_{n\to\infty} \frac{a_n}{b_n}$ had been ∞ , we cannot conclude anything). 3. Please *circle* **ONE** series below to work with:

$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5+n^5}} \quad \text{or} \quad \sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3} \text{ (from Sec 11.4 Examples 1 and 4)}.$$

Try Divergence Test: Both $\frac{2n^2+3n}{\sqrt{5+n^5}}$ and $\frac{5}{2n^2+4n+3}$ converge to 0. The Divergence Test is inconclusive.

Try Ratio test (for both): Before trying it, you know that ratio tests will be inconclusive for series that look like p-series.

Try Limit Comparison Test (LCT): For $a_n = \frac{2n^2 + 3n}{\sqrt{5+n^5}}$: Try $b_n = \frac{1}{\sqrt{n}}$. See textbook Sec 11.4 Example 4 page 730 for solution. For $a_n = \frac{5}{2n^2 + 4n + 3}$: Try $b_n = \frac{1}{n^2}$. $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{5}{2n^2 + 4n + 3} \frac{n^2}{1}$ $= \lim_{n \to \infty} \frac{5n^2}{2n^2 + 4n + 3}$ $= \lim_{n \to \infty} \frac{5}{2 + \frac{4n}{n^2} + \frac{3}{n^2}}$ $= \frac{5}{2 + \lim_{n \to \infty} \frac{4}{n} + \lim_{n \to \infty} \frac{3}{n^2}}{n^2}$

Since $\sum b_n$ converges by the *p*-series test, by the Limit Comparison Test, we conclude that $\sum a_n$ also converges.

(See also textbook Sec 11.4 Example 1 page 728 for solution using the comparison test. I think my LCT solution will takes less time to do in case the term of your series has minus signs in the denominator.)