You may use the fact that

$$
\lim _{x \rightarrow \infty}\left(\frac{x+1}{x}\right)^{x}=e \quad \text { and } \quad \lim _{x \rightarrow \infty}\left(\frac{x}{x+1}\right)^{x}=\frac{1}{e}
$$

without explanation. Note that the first few digits of e are 2.718.

1. (a) Complete the statement of the ratio test:

Suppose a_{n} is a positive number for all $n \geq 1$.
ANSWER: copy from Sec 11.6. Don't forget to include $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ in your statement.
(b) Please circle ONE series that you want to work with:

$$
\sum \frac{5^{n}}{n!} \quad \text { or } \quad \sum \frac{n!}{n^{n}} \text { (similar to Sec 11.6 Example } 5 \text { pg } 741 \text {). }
$$

(c) Show your work for attempting to use the ratio test to this series to determine whether it converges or diverges.

For $a_{n}=\frac{5^{n}}{n!}$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{5^{n+1}}{(n+1)!} \frac{n!}{5^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{5}{n+1} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{5}{n}}{1+\frac{1}{n}} \\
& =\frac{\lim _{n \rightarrow \infty} \frac{5}{n}}{1+\lim _{n \rightarrow \infty} \frac{1}{n}} \\
& =0 .
\end{aligned}
$$

For $a_{n}=\frac{n!}{n^{n}}$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n+1)^{(n+1)}} \frac{n^{n}}{n!} \\
& =\lim _{n \rightarrow \infty}(n+1) \frac{n^{n}}{(n+1)^{(n+1)}} \\
& =\lim _{n \rightarrow \infty}(n+1) \frac{n^{n}}{(n+1)^{n}(n+1)} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n} \\
& =\frac{1}{e} \text { as given at the top of the page }
\end{aligned}
$$

See also book's solution for a similar-looking series Sec 11.6 Example 5 pg 741.
(d) If the ratio test is conclusive, determine whether the series is convergent or divergent. Otherwise, state that the ratio test is inconclusive.

The two series converge by the ratio test since $0<1$ and $\frac{1}{e}<1$.
2. Please circle ONE series below to work with:

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n} \quad \text { or } \quad \sum_{n=4}^{\infty} \frac{1}{2^{n}-9}(\text { from Sec 11.4 Examples } 2 \text { and } 3) .
$$

Try Divergence Test: Both $\frac{\ln n}{n}$ and $\frac{1}{2^{n}-9}$ converge to 0 . So the Divergence Test is inconclusive.

Try Ratio test:
For $a_{n}=\frac{\ln n}{n}$: you know that ratio tests will be inconclusive for terms involving only constants, log, and polynomials. See first page of "growth rates" notes: https://egunawan.github.io/fall17/notes/notes11_6part3key.pdf

For $a_{n}=\frac{1}{2^{n}-9}$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{2^{n}-9}{2^{n+1}-9} \\
& \stackrel{L}{=} \lim _{n \rightarrow \infty} \frac{\ln 22^{n}}{\ln 22^{n+1}} \\
& =\frac{1}{2}<1 .
\end{aligned}
$$

By the ratio test, $\sum_{n=4}^{\infty} \frac{1}{2^{n}-9}$ converges.

Try Limit Comparison Test (LCT):
For $a_{n}=\frac{\ln n}{n}$: Try $b_{n}=\frac{1}{n}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\ln n}{n} \frac{n}{1} \\
& =\lim _{n \rightarrow \infty} \ln n=\infty
\end{aligned}
$$

Since $\sum b_{n}$ diverges by the harmonic series test (p-series test), by the Limit Comparison Test, we conclude that $\sum a_{n}$ also diverges. (See also book's solution using Comparison Test. Sec 11.4 Example 2 pg 728-729.)

For $a_{n}=\frac{1}{2^{n}-9}$: Try $b_{n}=\frac{1}{2^{n}}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}-9} \frac{2^{n}}{1} \\
& =\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n}-9} \\
& =\lim _{n \rightarrow \infty} \frac{1}{1-\frac{9}{2^{n}}} \\
& =\frac{1}{1-\lim _{n \rightarrow \infty} \frac{9}{2^{n}}}=1
\end{aligned}
$$

We know that $\sum b_{n}$ converges by the geometric series test (or you can show this using the ratio test or root test). So, by the Limit Comparison test, we conclude that $\sum a_{n}$ also diverges. (Warning: if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ had been ∞, we cannot conclude anything).
3. Please circle $\mathbf{O N E}$ series below to work with:

$$
\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}} \quad \text { or } \quad \sum_{n=1}^{\infty} \frac{5}{2 n^{2}+4 n+3}(\text { from Sec } 11.4 \text { Examples } 1 \text { and } 4)
$$

Try Divergence Test: Both $\frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$ and $\frac{5}{2 n^{2}+4 n+3}$ converge to 0 . The Divergence Test is inconclusive.

Try Ratio test (for both): Before trying it, you know that ratio tests will be inconclusive for series that look like p-series.

Try Limit Comparison Test (LCT):
For $a_{n}=\frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$:
Try $b_{n}=\frac{1}{\sqrt{n}}$.
See textbook Sec 11.4 Example 4 page 730 for solution.
For $a_{n}=\frac{5}{2 n^{2}+4 n+3}$:
Try $b_{n}=\frac{1}{n^{2}}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{5}{2 n^{2}+4 n+3} \frac{n^{2}}{1} \\
& =\lim _{n \rightarrow \infty} \frac{5 n^{2}}{2 n^{2}+4 n+3} \\
& =\lim _{n \rightarrow \infty} \frac{5}{2+\frac{4 n}{n^{2}}+\frac{3}{n^{2}}} \\
& =\frac{5}{2+\lim _{n \rightarrow \infty} \frac{4}{n}+\lim _{n \rightarrow \infty} \frac{3}{n^{2}}} \\
& =\frac{5}{2+0+0} \\
& =\frac{5}{2} .
\end{aligned}
$$

Since $\sum b_{n}$ converges by the p-series test, by the Limit Comparison Test, we conclude that $\sum a_{n}$ also converges.
(See also textbook Sec 11.4 Example 1 page 728 for solution using the comparison test. I think my LCT solution will takes less time to do in case the term of your series has minus signs in the denominator.)

