Math 1152Q: Fall '17

Week 3 Wed worksheet

1. (Sec 11.1 monotone convergence theorem) Recall that bounded means bounded above and below.
(a) True or false? The sequence

$$
\{\sin (n)\}_{n=1}^{\infty}
$$

is bounded. Give upper and lower bounds (if true) or justification (if false).
(b) True or false? The sequence

$$
\left\{\frac{7 n-8}{8 n+3}\right\}_{n=1}^{\infty}
$$

is bounded above. Give an upper bound (if true) or justification (if false). (Note: see WebAssign no. 7).
(c) True or false? The sequence

$$
\left\{\frac{7 n-8}{8 n+3}\right\}_{n=1}^{\infty}
$$

is bounded below. Give a lower bound (if true) or justification (if false). (Note: see WebAssign no. 7).
(d) T or F? Every bounded sequence is convergent. Justify (if T) or give a counterexample (if F).
(e) T or F? There is a monotonically increasing sequence that converges to 10. Give an example (if T) or justify (if F).
(f) T or F? There exists a monotonically increasing bounded sequence that does not converge (that is, diverges). Provide an example (if T) or justify (if F).
(g) T or F? There is a non-monotonic sequence that converges to 4. Provide an example (if T) or justify (if F).
2. (Sec 11.1 proving convergence of a sequence)
(a) Give a positive number N such that, $\frac{1}{n^{2}-5}<\frac{1}{7000}$ for all $n>N$.
(b) I give you a positive number ϵ. Choose a positive number N such that, if $n>N$, then $\frac{1}{n^{2}-5}<\epsilon$.
(c) The sequence

$$
\left\{\frac{7 n-8}{8 n+3}\right\}_{n=1}^{\infty}
$$

converges to $7 / 8$. For any number $\epsilon>0$, find N so that $\left|\frac{7 n-8}{8 n+3}-\frac{7}{8}\right|<\epsilon$ as long as $n>N$.
(d) The sequence $a_{n}=(2 n+4) /(5 n-8)$ converges to $2 / 5$. For any number $\epsilon>0$, choose N so that if $n>N$, then $\left|2 / 5-a_{n}\right|<\epsilon$.
3. (Sec 11.1 sequences)
(a) Compute

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

(Hints: Note the indeterminate form of type 1^{∞}. You can write $y=\left(1+\frac{1}{x}\right)^{x}$ and $\ln (y)=$ $x\left(1+\frac{1}{x}\right)$. See l'Hopital handout pages 4-5 and WebAssign Sec 11.1 no. 5.)
(b) Compute

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{2 n}\right)^{n} \text { and } \lim _{n \rightarrow \infty}\left(1+\frac{5}{4 n}\right)^{n} \quad \text { if they exist. }
$$

(c) Find the limit of the sequence

$$
\{\sqrt{5}, \sqrt{5 \sqrt{5}}, \sqrt{5 \sqrt{5 \sqrt{5}}}, \ldots\} \text { (You can assume without explanation that it converges). }
$$

4. (Sec 11.2 WebAssign homework)
(a) Determine whether each series is convergent or divergent by expressing s_{n} as a telescoping sum.

$$
\text { (i) } \sum_{n=1}^{\infty} \frac{5}{n(n+1)} \text {. For now, use the fact that: } \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}
$$

(ii) $\sum_{n=2}^{\infty} \frac{8}{n^{2}-1}$. For now, use the fact that: $\frac{2}{(n-1)(n+1)}=\frac{1}{n-1}-\frac{1}{n+1}$
(b) T or F ? If $\left\{a_{n}\right\}$ doesn't converge to 0 , then the series of $\sum_{n=1}^{\infty} a_{n}$ diverges. If T , justify. If F , give a counterexample.
(c) T or F ? If $\lim _{n \rightarrow \infty} a_{n}=0$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges. If T , justify. If F , give a counterexample.
(d) Determine whether the sequence $\left\{\frac{-1+n^{2}}{5 n^{2}+100}\right\}_{n=1}^{\infty}$ Determine whether the series $\sum_{n=1}^{\infty} \frac{-1+n^{2}}{5 n^{2}+100}$ is convergent or divergent.
5. Apply squeeze theorem to answer the following questions.
(a) Determine whether

$$
\left\{\frac{1}{5 n!2^{n}}\right\} \text { converges or diverges. }
$$

(Hint: squeeze this sequence between 0 and a geometric sequence. See also a related sequence on WebAssign Sec 11.1 no. 6).
(b) Consider the sequence $\left\{\frac{\cos n}{\sqrt{n}}\right\}$ for $n \geq 1$. Use the squeeze theorem to show that this converges and find its limit. Hint: Find two sequences of the type $\frac{(\text { a constant })}{\sqrt{n}}$ that bound $\frac{\cos n}{\sqrt{n}}$. You may assume that $\lim _{n \rightarrow \infty} \frac{(\text { a constant })}{\sqrt{n}}=0$.

