Arc Length

Suppose that a curve C is defined by the equation $y=f(x)$, where f is continuous and $a \leq x \leq b$. We obtain a polygonal approximation to C by dividing the interval $[a, b]$ into n subintervals with endpoints $x_{0}, x_{1}, \quad, x_{n}$ and equal width Δx. If $y_{i}=f\left(x_{i}\right)$, then the point P_{i} $\left(x_{i}, y_{i}\right)$ lies on C and the polygon with vertices $P_{0}, P_{1}, \quad, P_{n}$ is an approximation to C.

The length L of C is approximately the length of this polygon and the approximation gets better as we let n increase. Therefore, we define the length L of the curve C with equation $y=f(x)$, $a \leq x \leq b$, as the limit of the lengths of these inscribed polygons (provided the limit exists).

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

The definition of arc length given above is not very convenient for computational purposes, but we can derive an integral formula for L in the case where f has a continuous derivative. Such a function f is called smooth because a small change in x produces a small change in $f^{\prime}(x)$.

If we let $\Delta y_{i}=y_{i}-y_{i-1}$, then

$$
\begin{aligned}
\left|P_{i-1} P_{i}\right| & =\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}} \\
& =\sqrt{(\Delta x)^{2}+\left(\Delta y_{i}\right)^{2}} \\
& =\sqrt{(\Delta x)^{2}\left[1+\left(\frac{\Delta y_{i}}{\Delta x}\right)^{2}\right]} \\
& =\sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x}\right)^{2}} \cdot \Delta x
\end{aligned}
$$

By applying the Mean Value Theorem to f on the interval $\left[x_{i-1}, x_{i}\right.$], we find that there is a number x_{i}^{*} between x_{i-1} and x_{i} such that

$$
f\left(x_{i}\right)-f\left(x_{i-1}\right)=f^{\prime}\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)
$$

Thus we have

$$
\begin{aligned}
\left|P_{i-1} P_{i}\right| & =\sqrt{1+\left(\frac{\Delta y_{i}}{\Delta x}\right)^{2}} \cdot \Delta x \\
& =\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \cdot \Delta x
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right| \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \cdot \Delta x \\
& =\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\end{aligned}
$$

The integral exists because the integrand $\sqrt{1+\left[f^{\prime}(x)\right]^{2}}$ is continuous. Thus we have the following theorem.
\square
Similarly, if a curve has the equation $x=g(y), c \leq y \leq d$, and $g^{\prime}(y)$ is continuous, then

$$
L=
$$

Example:
Find the length of the curve $y^{2}=x^{3}$ for $1 \leq x \leq 4$.

The Arc Length Function

If a smooth curve C has the equation $y=f(x), a \leq x \leq b$, let $s(x)$ be the distance along C from the initial point $P_{0}(a, f(a))$ to the point $Q(x, f(x))$. Then s is a function, called the arc length function.

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

Special Problem

Example:
Find the length of the curve $f(x)=x^{3}+\frac{1}{12 x}$ on the interval $\left[\frac{1}{2}, 2\right]$.

