### <u>Recall</u>

The improper integral is used for cases in which

- The interval of integration is infinite or
- The integrand has an infinite discontinuity on the interval of integration.

# **Infinite Discontinuity**



| $c = \frac{1}{4}$       | $c = \frac{1}{9}$         | $c = \frac{1}{16}$         | $c \rightarrow 0^+$ |
|-------------------------|---------------------------|----------------------------|---------------------|
| $2-2\sqrt{\frac{1}{4}}$ | $2 - 2\sqrt{\frac{1}{9}}$ | $2 - 2\sqrt{\frac{1}{16}}$ |                     |

We express this result as

$$\int_0^1 \frac{1}{\sqrt{x}} \, dx = 2$$

which is an improper integral because 0 leads to a zero-denominator.



<u>Example</u>: Evaluate  $\int_0^3 \frac{1}{\sqrt{9-x^2}} dx$ .

Section 7.8 Part 2

<u>Example</u> (See Example 8 pg 532: Use integration by parts and l'Hopital's Rule): Evaluate  $\int_0^1 \ln x \, dx$ .

What about  $\int_0^1 (\ln x)^2 dx$  ?

What about  $\int_0^1 (\ln x)^n dx$  for n = 3, 4, ...? (This is in Problems B – you don't need to submit for reading HW)

## A Comparison Test for Improper Integrals





### Caution

- If  $\int_{a}^{\infty} g(x) dx$  is convergent, then \_\_\_\_\_.
- If  $\int_{a}^{\infty} f(x) dx$  is divergent, then \_\_\_\_\_.

#### Example:

Show that the integral  $\int_{1}^{\infty} \frac{1+e^{-x}}{x} dx$  is divergent. Follow pg 534 Sec 7.8.

### Limit Comparison Test for Improper Integrals!

(Hint: the Limit Comparison Test for series from Sec 11.4).