Idea

The improper integral is used for cases in which

- The interval of integration is infinite or
- The integrand has an infinite discontinuity on the interval of integration.

Infinite Intervals

Consider the integral $\int_{1}^{b} \frac{1}{x^2} dx$, for any real number b > 1.

$$\int_{1}^{b} \frac{1}{x^{2}} dx = \left(-\frac{1}{x}\right)_{1}^{b} = 1 - \frac{1}{b}$$

b=2	b=3	b = 4	$b \rightarrow \infty$
$1 - \frac{1}{2}$	$1 - \frac{1}{3}$	$1 - \frac{1}{4}$	

We express this result as

$$\int_{1}^{\infty} \frac{1}{x^2} dx = 1$$

which is an improper integral because ∞ appears in the upper limit.

Definitions Improper Integrals over Infinite Intervals

1. If $\int_a^t f(x) dx$ exists for every number $t \ge a$, then

$$\int_{a}^{\infty} f(x) dx = \underline{\hspace{1cm}}$$

provided this limit exists (as a finite number).

2. If $\int_{t}^{b} f(x) dx$ exists for every number $t \le b$, then

$$\int_{-\infty}^{b} f(x) dx = \underline{\hspace{1cm}}$$

provided this limit exists (as a finite number).

The improper integrals $\int_a^\infty f(x) dx$ and $\int_{-\infty}^b f(x) dx$ are called

- convergent if the corresponding limit exists and
- divergent if the limit does not exist.
- 3. If both $\int_a^\infty f(x) dx$ and $\int_{-\infty}^a f(x) dx$ are convergent, then we define

$$\int_{-\infty}^{\infty} f(x) \, dx = \underline{\qquad}.$$

Example:

Evaluate $\int_0^\infty \frac{1}{1+x^2} dx$.

Section 7.8 Part 1

Improper Integrals

MATH 1152Q Notes

Example:

Evaluate $\int_0^\infty \cos x \, dx$.

Example: Evaluate $\int_{2}^{\infty} \frac{1}{x^{2}} \cos\left(\frac{\pi}{x}\right) dx$.