Name:

TASK 1.

Go to page 493. Read/skim the introduction.
Below, write down the question and solution to Example 1 (Sec 7.4, page 493). Make sure you understand every step. (Write the long division below without looking at the book.)

Motivation

Note that

$$
\frac{1}{x-1}-\frac{1}{x+3}=\frac{(x+3)-(x-1)}{(x-1)(x+3)}=\frac{4}{x^{2}+2 x-3}
$$

The purpose of partial fractions is to reverse this process.

Partial Fractions	Common Denominator	Rational function
$\frac{1}{x-1}-\frac{1}{x+3}$	\rightarrow	$\frac{4}{x^{2}+2 x-3}$
Easy to integrate	Partial Fraction Decomposition	Difficult to integrate
$\int\left(\frac{1}{x-1}-\frac{1}{x+3}\right) d x$	\leftarrow	$\int \frac{4}{x^{2}+2 x-3} d x$

Definition

Let $f(x)=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomials.

- $f(x)$ is called a rational function.
- If the degree of $p(x)$ is less than the degree of $q(x)$, then $f(x)$ is called proper.

Procedure

Suppose $f(x)$ is a proper rational function.

1. Factor the Denominator.
2. Perform Partial Fraction Decomposition.
3. Clear Denominators by
4. Solve for Unknowns by
\qquad .

TASK 2a. Case 1 - (fill in the blank, copy from Sec 7.4, pg 494)
The denominator is a product of distinct linear factors
Suppose the denominator of a proper rational function can be written as

$$
\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \quad\left(a_{k} x+b_{k}\right)
$$

where no factor is repeated (and no factor is a constant multiple of another). Then there exists constants A_{1}, A_{2}, , and A_{k} such that

Task 2b. Below, write down the question and solution to Example 3 (Sec 7.4, pg 495) but change the constant "a" to your favorite positive number.

Study (or skim) the solution to Example 2 ($\mathrm{Sec} 7.4, \operatorname{pg} 494$).
(Optional) TASK 3a: Below, write down the solution to Example 2 (Sec 7.4, pg 494).

TASK 3b. Follow book's Example 2 above (or a different strategy) to solve this similar problem:
Consider the function $f(x)=\frac{3 x^{2}+7 x-2}{x^{3}-x^{2}-2 x}$.
a. Find the partial fraction decomposition for $f(x)$.
b. Evaluate $\int f(x) d x$.

Verify your answer with a computer. (Type "partial fraction" on Wolfram|Alpha).

TASK 4a. Case 2 - (fill the blank by copying the line labeled 7 from Sec 7.4, top of pg 496) The denominator is a product of linear factors, some of which are repeated

Suppose the repeated linear factor $(a x+b)^{m}$ appears in the denominator of a proper rational function. The partial fraction decomposition has a partial fraction for each power of $(a x+b)$ up to and including the m th power. That is, there exists constants A_{1}, A_{2}, , and A_{m} such that the partial fraction decomposition contains the sum

TASK 4b. Finish the following incomplete solution:
Consider the function $f(x)=\frac{5 x^{2}-3 x+2}{x^{3}-2 x^{2}}$.

1. Find the partial fraction decomposition for $f(x)$.

Solution: We use the above Case 2 theorem to know that we can write

$$
\frac{5 x^{2}-3 x+2}{x^{3}-2 x^{2}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-2}
$$

From here, follow the same strategy of Example 4 (or another method) to compute A, B, and C. Verify your work - type on Wolfram|Alpha: "partial fraction $\left(\left(5 x^{\wedge} 2-3 x+2\right) /\left(x^{\wedge} 3-2 x^{\wedge} 2\right)\right)$ "
2. Evaluate $\int f(x) d x$.

Task 4a. Case 3 - (fill in the blank by copying from pg 497)
The denominator contains irreducible quadratic factors, none of which is repeated
Suppose the denominator of a proper rational function has the factor $a x^{2}+b x+c$, where $b^{2}-4 a c<0$. There exists constants A and B such that the partial fraction decomposition contains a term of the form

Task 4b. Write down the integral to Example 5 (pg 497). Copy down the solution only as far as computing A, B, C. Show your work.
(Optional: finish computing the integral)
Note: Case I, II, III are the most common types that will be useful for differential equations. (You can read about case IV (pg 499) if you're interested, but I won't cover it.)

