\qquad Integration by Parts

Recall

Reverse Chain Rule to get Substitution Rule.

$$
\begin{gathered}
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x) \\
\int f^{\prime}(g(x)) g^{\prime}(x) d x=f(g(x))+C
\end{gathered}
$$

Let $u=g(x)$, then $d u=g^{\prime}(x) d x$. Thus

$$
\int f^{\prime}(g(x)) g^{\prime}(x) d x=\int f^{\prime}(u) d u=f(u)+C=f(g(x))+C .
$$

Integration by Parts

Reverse Product Rule to get Integration by Parts.

$$
\begin{gathered}
\frac{d}{d x}[u(x) v(x)]=u^{\prime}(x) v(x)+u(x) v^{\prime}(x) \\
\int u^{\prime}(x) v(x) d x+\int u(x) v^{\prime}(x) d x=u(x) v(x)+C \\
\int u(x) v^{\prime}(x) d x=u(x) v(x)-\int u^{\prime}(x) v(x) d x
\end{gathered}
$$

Since $\frac{d v}{d x}=v^{\prime}(x)$ and $\frac{d u}{d x}=u^{\prime}(x)$, we can obtain

$$
\int u d v=u v-\int v d u
$$

Integration by Parts
Suppose that u and v are differentiable functions. Then,

$$
\int u d v=u v-\int v d u
$$

Integration by Parts is an integration technique for evaluating integrals of product of functions.

Integration by Parts
To use Integration by Parts, one should

- Choose u and $d v$. Note: $d v$ should be easy to integrate.
- Evaluate $d u$ and v.
- Apply the formula.

Example:
Evaluate $\int x e^{x} d x$

Integration by Parts for Definite Integrals
Let u and v be differentiable. Then,

$$
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

TASK 1: First attempt on your own. Then follow pg 473, Sec 7.1 Ex 2 to evaluate the indefinite integral. Compute the definite integral on your own. Check your answer with WolframAlpha.
Evaluate $\int_{1}^{e} \ln x d x$.

Recall

Integration by Parts
Suppose that u and v are differentiable functions. Then,

$$
\int u d v=u v-\int v d u .
$$

Repeated Use of Integration by Parts

[Type 1] Use Integration by Parts AGAIN.
TASK 2: First attempt on your own. This requires multiple applications of integration by parts. Then follow the solution given on pg 474 Sec 7.1 Example 3.
Evaluate $\int x^{2} e^{x} d x$
[Type 2] Use Integration by Parts AGAIN + MERGE.
TASK 3: First attempt on your own (it does take multiple steps using Calc II methods). Then follow the solution given on pg 474 Sec 7.1 Ex 4.
Evaluate $\int e^{x} \sin x d x$.

TASK 4: Evaluate $\int \tan ^{2} x \sec x d x$.
Instruction:

1. First, use the identity $\tan ^{2} \theta+\ldots \quad=\sec ^{2} \theta$ to get rid of the tangent.
2. Evaluate the antiderivative of $\left(\sec ^{\wedge} 3 x\right)$ on your own and by copying pg $483 \operatorname{Sec} 7.2 \operatorname{Ex} 8$.
3. You've already evaluated the antiderivative for $(\sec x)$ in your last reading homework:
https://egunawan.github.io/fall17/notes/notes7 2part2.pdf
Look this up at the top of page 483 (Don't memorize this antiderivative! But be able to evaluate this using u-substitution after receiving hints for what to do).
(Verify your solution by looking at the answer key to Learning Activity 7.2 part 2:
https://egunawan.github.io/fall17/notes/LA7 2part2key.pdf)
