\qquad

Recall

$$
\sum_{k=0}^{\infty} r^{k}=1+r+r^{2}+r^{3}+\mathrm{L} \ldots=\frac{1}{1-r} \text { provided }|r|<1
$$

Replace the real number r by the variable x, then (fill in the blank, eq. 2 pg 746)

The infinite series is a power series.

Definition Power Series
A power series has the general form (follow page 747, equation 3)
where a and c_{k} are real numbers and x is a variable.

- The c_{k} 's are the coefficients of the power series and a is the center of the power series.
- The set of values of x for which the series converges is the interval of convergence.
- The radius of convergence of the power series, denoted R, is the distance from the center of the series to the boundary of the interval of convergence.

The sum of the series is a function

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
$$

whose domain is the set of all x for which the series converges.

Strategy Find the Interval and Radius of Convergence
For ALL power series,

Let $r=\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}(x-a)^{k+1}}{c_{k}(x-a)^{k}}\right|=\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right||x-a|$.
We want the power series to be convergent. That is, we want $r<1$.

1. If $\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right|=0$, then $r=|x-a| \lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right|=0<1$ for all x.

Thus the Interval of Convergence is $(-\infty, \infty)$ and the Radius of Convergence is ∞.
2. If $\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right|=\infty$, then $r=\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right||x-a|<1$ if and only if $|x-a|=0$.

Thus the Radius of Convergence is 0 .
3. If $\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right|=L$, then $r=|x-a| \lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right|=L|x-a|<1$ if and only if $|x-a|<\frac{1}{L}$.

Thus the Radius of Convergence is $\frac{1}{L}$.
Since the Ratio Test is inconclusive when $r=1$, we need to check the End Points and determine the Interval of Convergence.

Theorem Convergence of Power Series
A power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ centered at a converges in one of three ways:

1. The series converges absolutely for all x, in which case the interval of convergence is $(-\infty, \infty)$ and the radius of convergence is $R=\infty$.
2. There is a real number $R>0$ such that the series converges absolutely for $|x-a|<R$ and diverges for $|x-a|>R$, in which case the radius of convergence is R.
3. The series converges only at $x=a$, in which case the radius of convergence is $R=0$.

Example (optional):

Find the interval and radius of convergence for the power series $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.

Task 1. Practice (copy or verify with the book's Example 1, pg 747. See the table at the bottom of pg 749):
Find the interval and radius of convergence for the power series $\sum_{k=1}^{\infty} k!x^{k}$.

Task 2. Practice (verify with the book's Example 2, pg 747. See the table at bottom of pg 749): Find the interval and radius of convergence for the power series $\sum_{k=1}^{\infty} \frac{(x-2)^{k}}{k}$.

Strategy

If the given power series is a Geometric Series, then

Task 3. Practice (Please show work. Will be discussed in class):
Find the interval and radius of convergence for the power series $\sum_{k=0}^{\infty} \frac{(-1)^{k}(x-2)^{k}}{4^{k}}$.

Solution: The series converges if and only if $-2<x<6$ by the geometric series test. So the interval of convergence is $I=(-2,6)$ and the radius of convergence is $R=4$.

