Refer to the "growth rates" notes.

1. Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}
$$

(a) The denominator of the term is $\ln (n+1)$. Consider the function $\ln (x+1)$. Fill in the blank with \ll or \gg :

$$
\ln (x+1) \leq<x
$$

(b) This means that

$$
\lim _{x \rightarrow \infty} \frac{x}{\ln (x+1)}=\infty
$$

(c) Fill in the blank with \leq or \geq :

$$
\ln (n+1) \quad \leq \quad n \quad \text { for large enough } n
$$

(d) Fill in the blank with \leq or \geq :

$$
\frac{1}{\ln (n+1)} \geqslant \quad \frac{1}{n} \quad \text { for large enough } n
$$

(e) State the test which you would use to determine whether the series $\sum \frac{1}{n}$ converges or diverges.
P-series test or harmonic series test
(f) State whether the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges.

$$
\sum \frac{1}{n} \text { diverges }
$$

(g) State the statement of the limit comparison test.
(h) Compute $\lim _{n \rightarrow \infty} \frac{n}{\ln (n+1)}$. Note that the answer is given in part (b). $\lim _{n \rightarrow \infty} \frac{n}{\ln (n+1)} \stackrel{\mathbb{L}}{=} \lim _{n \rightarrow \infty} \frac{1}{\left(\frac{1}{n+1}\right)}=\lim _{n \rightarrow \infty} n+1=\infty$
(i) By the limit comparison test and part (f), the series

$$
\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)} \text { diverges }
$$

2. Let p be any positive integer (say, $p=5$) Let a be a number larger than 1 (say, $a=\frac{3}{2}$). Consider the series

$$
\sum_{n=1}^{\infty} \frac{n^{p}}{a^{n}} \quad \text { or } \quad \sum_{n=1}^{\infty} \frac{n^{5} 2^{n}}{3^{n}}
$$

After simplifying, we realize that the term of the series is

$$
\frac{n^{5}}{\left(\frac{3}{2}\right)^{n}}
$$

(a) The series $\sum_{n=1}^{\infty} n^{5}$ diverges by the p-series OR divergence
(b) The series $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$ Converges by the geometric series test.
(c) Let's figure out: is the numerator/ denominator more dominant than the other?
(d) The denominator of the term is $\left(\frac{3}{2}\right)^{n}$. Consider the function $\left(\frac{3}{2}\right)^{x}$. exponential

The numerator of the term is n^{5}. Consider the function x^{5}. polynomi al
Fill in the blank with \ll or \gg :

$$
x^{5} \lll\left(\frac{3}{2}\right)^{x} .
$$

(e) This means that (check the "growth rates" notes)
(f) Part (e) means that

(g) Quiz your classmate or yourself on the statement of the ratio test until it's memorized.
(h) (I told you that when you see only polynomial-like terms, like $n^{p_{1}}+n^{p_{2}}$, the ratio test will be inconclusive (convince yourself). But, if you see powers like a^{n} it's OK to use the ratio test. Let's apply the ratio test to $a_{n}=\frac{n^{5} 2^{n}}{3^{n}}$. Compute

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{(n+1)^{5}}{\left(\frac{3}{2}\right)^{(n+1)}} \frac{\left(\frac{3}{2}\right)^{n}}{n^{5}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{5} \frac{2}{3} \\
& \text { because is }=\left(\lim _{n \rightarrow \infty} \frac{n+1}{n}\right)^{5} \frac{2}{3} \\
& \chi^{5} \text { continuous } \\
& \text { at } 1
\end{aligned}=1^{5} \cdot \frac{2}{3}=\frac{2}{3}<1 .
$$

(i) By the ratio test, the series
3. Consider the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

for

$$
a_{n}=\frac{n^{n}}{7^{n}(n)!} \quad \text { and } \quad a_{n}=\frac{n^{n}}{2^{n}(n)!}
$$

(a) Look at the term of the series.

The numerator, n^{n} looks like the function

The denominator, $7^{n}(n)$! looks like the product of functions \qquad and

(b) Which is more dominant for large n ? The numerator or the denominator? Can you tell just by looking at the "growth rates" notes?

(c) I told you that the ratio test will probably work if you see exponents like r^{n} or a factorial. Compute

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

for

$$
a_{n}=\frac{n^{n}}{7^{n} n!} \quad \text { and } \quad a_{n}=\frac{n^{n}}{2^{n} n!}
$$

(Use the fact that $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $\left.n \rightarrow \infty\right)$
Answer Let $a_{n}=\frac{n^{n}}{r^{n} n!}$ where r is a positive number.

$$
\begin{aligned}
& \frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{n+1}}{r^{n+1}(n+1)!} \frac{r^{n} n!}{n^{n}}=\frac{1}{r(n+1)} \frac{(n+1)^{n+1}}{n^{n}} \\
&=\frac{1}{r}\left(\frac{n+1}{n}\right)^{n} \\
&=\frac{1}{r}\left(1+\frac{1}{n}\right)^{n} \\
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{1}{r}\left(1+\frac{1}{n}\right)^{n}=\frac{1}{r} \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\frac{e}{r}
\end{aligned}
$$

(d) By the ratio test, the series

$$
\begin{array}{ll}
\sum \frac{n^{n}}{7^{n} n!} & \text { Converges } \\
\text { because } \frac{e}{7}<1 & \text { and } \frac{n^{n}}{2^{n} n!} \frac{\text { diverges }}{\text { because } \frac{e}{2}}>1
\end{array}
$$

