Refer to the "growth rates" notes.

1. Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}
$$

(a) The denominator of the term is $\ln (n+1)$. Consider the function $\ln (x+1)$. Fill in the blank with \ll or \gg :

$$
\ln (x+1) \quad \quad x
$$

(b) This means that

$$
\lim _{x \rightarrow \infty}=\infty
$$

(See the "growth rates" notes)
(c) Fill in the blank with \leq or \geq :

$$
\ln (n+1) \quad n \quad \text { for large enough } n
$$

(d) Fill in the blank with \leq or \geq :

$$
\frac{1}{\ln (n+1)} \quad \frac{1}{n} \quad \text { for large enough } n .
$$

(e) State the test which you would use to determine whether the series $\sum \frac{1}{n}$ converges or diverges.
(f) State whether the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges or diverges.
(g) State the statement of the limit comparison test.
(h) Compute $\lim _{n \rightarrow \infty} \frac{n}{\ln (n+1)}$. Note that the answer is given in part (b).
(i) By the limit comparison test and part (ff), the series

$$
\sum_{n=1}^{\infty} \frac{1}{\ln (n+1)}
$$

2. Let p be any positive integer (say, $p=5$) Let a be a number larger than 1 (say, $a=\frac{3}{2}$). Consider the series

$$
\sum_{n=1}^{\infty} \frac{n^{p}}{a^{n}} \quad \text { or } \quad \sum_{n=1}^{\infty} \frac{n^{5} 2^{n}}{3^{n}}
$$

After simplifying, we realize that the term of the series is

$$
\frac{n^{5}}{\left(\frac{3}{2}\right)^{n}}
$$

(a) The series $\sum_{n=1}^{\infty} n^{5}$ \qquad by the \qquad test.
(b) The series $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$ \qquad by the \qquad test.
(c) Let's figure out: is the numerator/ denominator more dominant than the other?
(d) The denominator of the term is $\left(\frac{3}{2}\right)^{n}$. Consider the function $\left(\frac{3}{2}\right)^{x}$.

The numerator of the term is n^{5}. Consider the function x^{5}.
Fill in the blank with \ll or \gg :

$$
x^{5} \quad\left(\frac{3}{2}\right)^{x} .
$$

(e) This means that (check the "growth rates" notes)

$$
\lim _{x \rightarrow \infty} \ldots=\infty \text {. This also means } \lim _{x \rightarrow \infty} \quad=0
$$

(f) Part (e) means that \qquad is more dominant than \qquad .
(g) Quiz your classmate or yourself on the statement of the ratio test until it's memorized.
(h) (I told you that when you see only polynomial-like terms, like $n^{p_{1}}+n^{p_{2}}$, the ratio test will be inconclusive (convince yourself). But, if you see powers like a^{n} it's OK to use the ratio test. Let's apply the ratio test to $a_{n}=\frac{n^{5} 2^{n}}{3^{n}}$. Compute

$$
\lim _{n \rightarrow \infty} \frac{(n+1)^{5}}{\left(\frac{3}{2}\right)^{(n+1)}} \frac{\left(\frac{3}{2}\right)^{n}}{n^{5}}
$$

(i) By the ratio test, the series

$$
\sum_{n=1}^{\infty} \frac{n^{5} 2^{n}}{3^{n}}
$$

3. Consider the series

$$
\sum_{n=1}^{\infty} a_{n}
$$

for

$$
a_{n}=\frac{n^{n}}{7^{n}(n)!} \quad \text { and } \quad a_{n}=\frac{n^{n}}{2^{n}(n)!}
$$

(a) Look at the term of the series.

The numerator, n^{n} looks like the function \qquad .

The denominator, $7^{n}(n)$! looks like the product of functions \qquad and \qquad .
(b) Which is more dominant for large n ? The numerator or the denominator? Can you tell just by looking at the "growth rates" notes?
(c) I told you that the ratio test will probably work if you see exponents like r^{n} or a factorial. Compute

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

for

$$
a_{n}=\frac{n^{n}}{7^{n} n!} \quad \text { and } \quad a_{n}=\frac{n^{n}}{2^{n} n!}
$$

(Use the fact that $\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ as $n \rightarrow \infty$)
(d) By the ratio test, the series

$$
\sum \frac{n^{n}}{7^{n} n!} \longrightarrow \quad \text { and } \quad \sum \frac{n^{n}}{2^{n} n!}
$$

