Growth Rates

Definition Growth Rates of Functions (as x approaches infinite)

Suppose f and g are functions with $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$. Then

- f grows faster than g as $x \to \infty$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$.
- f and g have comparable growth rates if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = M$, where $0 < M < \infty$.

Theorem Asymptotic Hierarchy

Let $f \ll g$ mean that g grows faster than f as $x \to \infty$. Then

$$c \ll (\ln x)^q \ll x^p \ll a^x \ll x! \ll x^x$$

$$\lim_{n\to\infty} \sqrt[n]{c} \lim_{n\to\infty} \sqrt[n]{(\ln n)^q} \lim_{n\to\infty} \sqrt[n]{n^p} \lim_{n\to\infty} \sqrt[n]{a^n} \lim_{n\to\infty} \sqrt[n]{n!} \lim_{n\to\infty} \sqrt[n]{n^n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Example:

Use the **Root Test** to determine whether the series $\sum_{k=2}^{\infty} \frac{3^k \ln k}{2^k k^5}$ converge. See work below

$$\lim_{n \to \infty} C^{\frac{1}{n}} = C^{\left(\lim_{n \to \infty} \frac{1}{n}\right)} = C^{0} = 1$$

$$C^{\times} \text{ is continuous at } O$$

$$\lim_{n \to \infty} \left(\ln n\right)^{\frac{2}{n}} = \frac{2}{n}$$

Jam In
$$y = \lim_{x \to \infty} \frac{q_0 \ln(\ln x)}{x}$$

$$= \lim_{x \to \infty} \left(\frac{2 \ln x}{\ln x}\right)$$

So $\lim_{x \to \infty} y = \lim_{x \to \infty} e^{\ln x}$

$$= \lim_{x \to \infty} \lim_{x \to \infty} \ln y$$

Since $\lim_{x \to \infty} \lim_{x \to \infty} \ln y$

$$= \lim_{x \to \infty} \lim_{x \to \infty} \ln y$$

Since $\lim_{x \to \infty} \lim_{x \to \infty} \ln y$

Since $\lim_{x \to \infty} \lim_{x \to \infty} \frac{1}{x} = \lim_{x \to \infty} \frac{$

Answer using root test:

$$k\sqrt{a_k} = \frac{3}{2} \frac{(\ln k)^k}{k^{\frac{1}{2}k}}$$
 $\lim_{k \to \infty} (\ln k)^k = ?$
 $\lim_{k \to \infty} (\ln x)^{\frac{1}{2}k}$
 $\lim_{k \to \infty} (\ln x)^{\frac{1}{2}k}$
 $\lim_{k \to \infty} (\ln x)^{\frac{1}{2}k} = 0$

So, $\lim_{k \to \infty} (\ln x)^{\frac{1}{2}k} = 0$

So, $\lim_{k \to \infty} (\ln x)^{\frac{1}{2}k} = 0$
 $\lim_{k \to \infty} (\ln x)^{\frac{1}{2}k} = 0$

Similarly, $\lim_{k \to \infty} (\ln x)^{\frac{1}{2}k} = 1$

So $\lim_{k \to \infty} (\ln x)^{\frac{1}{2}k} = 1$