Definition Growth Rates of Functions (as x approaches infinite)
Suppose f and g are functions with $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty$. Then

- f grows faster than g as $x \rightarrow \infty$ if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty$.
- f and g have comparable growth rates if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=M$, where $0<M<\infty$.

Theorem Asymptotic Hierarchy
Let $f \ll g$ mean that g grows faster than f as $x \rightarrow \infty$. Then

$$
c \ll(\ln x)^{q} \ll x^{p} \ll a^{x} \ll x!\ll x^{x}
$$

$\left\{\begin{array}{r} \\ \text { Example: }\end{array}\right.$
Use the Root Test to determine whether the series $\sum_{k=2}^{\infty} \frac{3^{k} \ln k}{2^{k} k^{5}}$ converge. \rightarrow See work below

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{q \ln (\ln x)}{x} \\
&=\lim _{x \rightarrow \infty}\left(q \frac{1}{(\ln x)}\right) \\
&=0 \\
& \text { So } \lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} e^{\ln y} \\
& \text { since } \infty \\
& e^{x} \text { is } \\
& \text { continuous } \\
& \text { at } 0=e^{\lim _{x \rightarrow \infty} \ln y} \\
&=e^{0}=1
\end{aligned}
$$

For $a_{k}=\frac{3^{k}}{2^{k}} \frac{l_{n} k}{k^{5}}, \sum a_{k} \begin{gathered}\text { converges on } \\ \text { diverges? }\end{gathered}$
Note that $\sum \frac{3^{k}}{2^{k}}$ diverges by geom series test
$\sum \ln k$ diverges by divergence test
$\sum \frac{1}{k^{5}}$ converges by p-series test.
But $\underbrace{x^{5}}_{\text {polynomial }} \ll \underbrace{\left(\frac{3}{2}\right)^{x}}_{\text {exponential }}$
so $\sum\left(\frac{3}{2}\right)^{k}$ wins, and $\sum a_{k}$ diverges.

Answer using root test:

$$
\begin{aligned}
& \sqrt[k]{a_{k}}=\frac{3}{2} \frac{(\ln k)^{\frac{1}{k}}}{k^{\frac{5}{k}}} \\
& \lim _{k \rightarrow \infty}(\ln k)^{\frac{1}{k}}=? \\
& L \cdot t_{y}=(\ln x)^{\frac{1}{x}} \\
& \ln y=\ln \left[(\ln x)^{\frac{1}{x}}\right] \\
& =\frac{1}{x} \ln [(\ln x)] \\
& \lim _{x \rightarrow \infty} \ln y \frac{L}{=} \frac{\left(\frac{1}{\ln x}\right)}{1}=0
\end{aligned}
$$

So, $\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} e^{\ln y}=e^{\lim _{x \rightarrow \infty} \ln y}=e^{0}=1$
e^{x} is continuous at 0

$$
\text { So } \lim _{k \rightarrow \infty}(\ln k)^{\frac{1}{k}}=1
$$

Similarly, $\lim _{k \rightarrow \infty} k^{\frac{5}{k}}=1$
So $\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\frac{3}{2}>1$.
By the root test, $\sum a_{k}$ diverges.

