TASK 1. Consider the series $\sum_{k=1}^{\infty} \left(\frac{2k+3}{3k+2}\right)^k$. Before seeing a step-by-step explanation, spend a second minutes estimating whether this series is convergent or divergent.

couple minutes estimating whether this series is convergent or divergent.

The Root Test

TASK 2. Go to page 741. Fill in the blanks by copying the the Root Test boxed statement in the middle of page 741.

Theorem The Root Test
Suppose $\sum_{n=1}^{\infty} a_n$ is an infinite series with positive terms. Consider $r = \lim_{n \to \infty} \sqrt[n]{a_n}$.
• If $0 \le r < 1$,
• If <i>r</i> > 1,
• r=1,

TASK 3a. Go to page 741. Below, either copy word-for-word or rewrite in your own words the paragraph between the Root Test boxed statement and Example 6.

TASK 3b. Summarize the main point of the paragraph:

• The Root Test is inconclusive ______ the Ratio Test is inconclusive.

TASK 4. Stay in page 741. Copy the solution of Example 6, which is the solution to the following. Replace 'absolutely convergent' with 'convergent'.

<u>Example</u>: Use the <u>**Root Test**</u> to determine whether the series $\sum_{k=1}^{\infty} \left(\frac{2k+3}{3k+2}\right)^k$ converge.

TASK 5a. (Will be discussed in class)

1. Estimate/ guess whether the series $\sum_{k=2}^{\infty} \frac{3^k \ln k}{2^k k^5}$ converges or diverges.

TASK 5b. (Will be discussed in class)

2. Use the <u>Root Test</u>, <u>(Limit) Comparison Test</u>, and <u>Divergence Test</u> (attempt all three) to determine whether the series $\sum_{k=2}^{\infty} \frac{3^k \ln k}{2^k k^5}$ converge. Some of the tests will take a lot of computation space, so don't give up too quickly.

- 3. Check with Wolfram|Alpha after you work for at least 15 minutes. Below, write down what Wolfram|Alpha gives you.
- 4. Of all three suggested tests above, pick your favorite.