## Definition Factorial

The factorial of a positive integer $n$, denoted by $n!$, is the product of all positive integers less than or equal to $n$.

## TASK 1. Fill in the blank.

- Simplify 4 ! = $\qquad$ .
- $0!=$ $\qquad$ .
- Simplify $\frac{(n+1)!}{n!}=$ $\qquad$ .

Theorem The Ratio Test
TASK 2. Go to pg 739. Fill in (i) - (iii) by copying the boxed theorem (top of the page).
Replace 'absolutely convergent' with 'convergent'.
Suppose $\sum_{n=1}^{\infty} a_{n}$ is an infinite series with positive terms. Consider $r=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.

- (i) If $0 \leq r<1$, $\qquad$ .
- (ii) If $r>1$, $\qquad$ .
- (iii) $r=1$, $\qquad$ .


## TASK 3a.

- Research shows that trying to solve a problem (and possibly making errors in the attempt)before being taught the solution leads to better learning.
- Attempt the following question for at least a couple minutes before flipping to the next page for a step-by-step explanation.
$\underline{\text { Example: Use the Ratio Test }}$ to determine whether the series $\sum_{k=1}^{\infty} \frac{10^{k}}{k!}$ converge.

TASK 3b. Complete the solution.
Step 1: Simplify $\left(\left(10^{\wedge}(n+1)\right) /(n+1)!\right) /\left(10^{\wedge} n / n!\right)$

Step 2: Compute $r=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ using your computation from step 1.

Step 3: Your result from step 2 should be $\mathrm{r}=0$. Using the ratio test theorem you copied down on the previous page, conclude that $\sum_{n=1}^{\infty} a_{n}$ is convergent / divergent (please circle the correct answer).

