Definition Factorial

The **factorial** of a positive integer n, denoted by n!, is the **product** of all positive integers less than or equal to n.

TASK 1. Fill in the blank.

- Simplify 4! = _____.
- 0!=_____.
- Simplify $\frac{(n+1)!}{n!} =$ _____.

Theorem The Ratio Test
TASK 2. Go to pg 739. Fill in (i) – (iii) by copying the boxed theorem (top of the page). Replace 'absolutely convergent' with 'convergent'.
Suppose $\sum_{n=1}^{\infty} a_n$ is an infinite series with positive terms. Consider $r = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.
• (i) If $0 \le r < 1$,
• (ii) If $r > 1$,
• (iii) <i>r</i> = 1,

TASK 3a.

- Research shows that trying to solve a problem (and possibly making errors in the attempt)before being taught the solution leads to better learning.
- Attempt the following question for at least a couple minutes before flipping to the next page for a step-by-step explanation.

<u>Example</u>: Use the <u>**Ratio Test**</u> to determine whether the series $\sum_{k=1}^{\infty} \frac{10^k}{k!}$ converge.

TASK 3b. Complete the solution.

Step 1: Simplify $((10^{(n+1)})/(n+1)!)/(10^{n}/n!)$

Step 2: Compute $r = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ using your computation from step 1.

Step 3: Your result from step 2 should be r = 0. Using the ratio test theorem you copied down on the previous page, conclude that $\sum_{n=1}^{\infty} a_n$ is convergent / divergent (please circle the correct answer).