Remainders in Alternating Series (pg 735)

Theorem Remainder in Alternating Series/ Alternating Series Estimation Theorem
Let $R_{n}=S-S_{n}$ be the remainder in approximating the value of a convergent alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ by the sum of its first n terms. Then

$$
\left|R_{n}\right| \leq b_{n+1} .
$$

In other words, the remainder is less than or equal to the magnitude of the first neglected term.

Example:
Determine how many terms of the following convergent series must be summed to be sure that the remainder is less than 10^{-4} ?

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\mathrm{L} \ldots \quad=\ln 2
$$

Fun fact: Use the Alternating Series Estimation Theorem to prove that e is irrational.

