Section 11.5

Alternating Series Notes

Recommended but optional reading HW (if you turn it in before Exam 1, I will correct it)

TASK 1. Fill in the blanks by looking up the answers from the given pages. **Recall Strategy for series with positive terms**

Determine whether the infinite series $\sum_{k=1}^{\infty} a_k$ with **positive terms** converge or diverge. 1. (11.2 page 710) The Geometric Series \rightarrow when $\sum_{k=1}^{\infty} a_k$ has the form $\sum_{k=1}^{\infty} r^k$ If $|r| \ge 1$, _____. If |r| < 1, _____. 2. (11.4 page 728) The *p*-Series \rightarrow when $\sum_{k=1}^{\infty} a_k$ has the form $\sum_{k=1}^{\infty} \frac{1}{k^p}$ If $p \le 1$, . If p > 1, 3. (11.2 page 713) The Divergence Test If $\lim_{k \to \infty} a_k = 0$, _____. If $\lim_{k \to \infty} a_k \neq 0$, _____. 4. (11.2 Ex. 8) The Telescoping Series \rightarrow when $\sum_{k=1}^{\infty} a_k$ can be reduced to $\sum_{k=1}^{\infty} (b_k - b_{k+1})$ $S_n =$ _____. If $\lim_{n \to \infty} S_n$ exists, _____. Otherwise, _____. 5. (11.6) The Ratio Test \rightarrow when a_k involves factorials or powers. Consider $r = \lim_{k \to \infty} \frac{a_{k+1}}{a_k}$. If $0 \le r < 1$, _____. If r > 1, _____. If r = 1, _____. 6. (11.6) The Root Test \rightarrow when a_k involves powers. Consider $r = \lim_{k \to \infty} k \sqrt{a_k}$. If $0 \le r < 1$, _____. If r > 1, _____. If r = 1, _____. 7. (11.4 page 729) The Limit Comparison Test \rightarrow when a_k involves dominant terms (pseries, polynomial/polynomial, or a geometric series). Consider $\lim_{k \to \infty} \frac{a_k}{b} = L$. If $0 < L < \infty$ and $\sum_{k=1}^{\infty} b_k$ converges, _____. If $0 < L < \infty$ and $\sum_{k=1}^{\infty} b_k$ diverges, _____. If L = 0 and $\sum_{k=1}^{\infty} b_k$ converges, _____. If L = 0 and $\sum_{k=1}^{\infty} b_k$ diverges, _____. If $L = \infty$ and $\sum_{k=1}^{\infty} b_k$ converges, _____. If $L = \infty$ and $\sum_{k=1}^{\infty} b_k$ diverges, _____. 8. (11.4 page 727) The Comparison Test \rightarrow when none of the above methods works or when there is an obvious comparison or when you want to think. If $0 < a_k \le b_k$ and $\sum_{k=1}^{\infty} b_k$ converges, _____. If $0 < a_k \le b_k$ and $\sum_{k=1}^{\infty} b_k$ diverges, _____. If $0 < b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ converges, _____. If $0 < b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges, _____.

What if we are given a series $\sum (-1)^{n+1} b_n$ where $b_n > 0$? How do we determine whether the series converges?

TASK 2. Go to Sec 11.5 page 732-733. Read until just before the "proof of the alternating series test" (reading the proof is optional).

Alternating Series Test

Definition Alternating Series

Suppose that $b_n > 0$ for all positive integer *n*, then the series

$$\sum_{n=1}^{\infty} (-1)^{n+1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + L + (-1)^{n+1} b_n + L$$

is called the Alternating Series.

<u>Example</u> (Example 1 pg 734): $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ is called the Alternating Harmonic Series.

TASK 3a. Complete the following by copying from the reading.

Theorem The Alternating Series Test	
The alternating series $\sum (-1)^{n+1} b_n$ converges provided	
i.) $\{b_n\}$ is for all <i>n</i> .	
In other words,	
ii.) $\lim_{n \to \infty} b_n = \underline{\qquad}.$	
TASK 3b. Procedure (fill in the blanks) If $\lim_{n\to\infty} b_n \neq 0$ and $\lim_{n\to\infty} (-1)^{n+1} b_n \neq 0$,	
then $\sum (-1)^{n+1} b_n$	
(by the	Test from Sec 11.2 page 713).
If $\lim_{n\to\infty} b_n = 0$, check whether $\{b_n\}$ is decreasing.	
• If $\{b_n\}$ is decreasing, then $\sum (-1)^{n+1} b_n$	
(by the	Test, Sec 11.5 page 732).

TASK 4 (Example 1 page 734): Answer the following question by closely following the explanation for Example 1 page 734 in the book. It would be more effective if you first write your answer without looking at the book then check the book afterwards.

Determine whether
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converges.

TASK 5. Complete the following.

TASK 6. Stay on page 734. Attempt to do Example 2 *AND* Example 3 on a separate paper without looking at the solution in the book. Check your solution with the book.

Please choose either Example 2 or Example 3 and write down its question and solution in the space below.

Do TASKS 7 and 8 by imitating Example 1, 2, and 3 (pg 734). Hint: one of them converges and the other diverges. Check your answers with WolframAlpha.

TASK 7.

Example:

Determine whether $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4}{5^n}$ converges.

Step (ii): Calculate $\lim_{n\to\infty} b_n =$

Step (i): Estimate (in your head or scratch paper) whether $\{b_n\}$ is decreasing. If you believe it is decreasing, verify by:

- citing a known fact (for example, end behavior of a geometric sequence, see Sec 11.1 Example 11 page 700, or end behavior of sequences with terms 1/n^r, see Sec 11.1 Equation 4 page 697),
- computing a derivative (follow Sec 11.5 Example 3 page 734),
- or directly (follow Sec 11.1 Example 13 page 701).

TASK 8. <u>Example</u>: Determine whether $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n^2}$ converges.

Step (ii): Calculate $\lim_{n\to\infty} b_n =$

Step (i): Estimate (in your head or scratch paper) whether $\{b_n\}$ is decreasing. If you believe it is decreasing, verify by:

- citing a known fact (for example, end behavior of a geometric sequence, see Sec 11.1 Example 11 page 700, or end behavior of sequences with terms 1/n^r, see Sec 11.1 Equation 4 page 697),
- computing a derivative (follow Sec 11.5 Example 3 page 734),
- or directly (follow Sec 11.1 Example 13 page 701).