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Estimating the Sum of a Series (pg 723) 
 
We want to find an approximation to a convergent series naå = S . Any partial sum nS  is an 
approximation to S  since lim nn

S S
®¥

= . But how good is such an approximation?  

 
To find out, we need to estimate the size of the remainder 

 
nR nS S= - 1 2 3n n na a a+ + += + + + … 

 
The remainder nR  is the error made when nS  is used as an approximation to S . 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remainder Estimate for the Integral Test (*) 
 
Suppose ( ) kf k a=  , where f  is a continuous, positive, decreasing function for x n³  and naå  
is convergent. If n nR S S= - , then 
 

£ nR £ . 
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Example 5 pg 723: 

Consider the approximation of the infinite series 3
1

1
n n

¥

=
å  by using the sum of the first 10  terms. 

a.  Estimate the error. 
b.  How many terms are required to ensure that the sum is accurate to within 0.0005? 
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If we add nS  to each side of the inequalities in the previous result (*), we get 
 
 

£ S £ . (**) 
 
 
 Note: (**) gives a better estimate to the sum of the series than the partial sum nS  does. 
 
Example 6: 

Consider the infinite series 3
1

1
n n

¥

=
å . Given 10 1.197532S » , estimate the sum of the series.  

 
 
 
 
 
 
 
 
 
 


