The Integral Test and Estimates of Sums

Example:

Suppose f(x) is a continuous and positive function on $[1,\infty)$.

a. Use the **<u>Right Endpoint Rule</u>** with n = 5 to approximate the integral $\int_{1}^{6} f(x) dx$.

b. Use the <u>Left Endpoint Rule</u> with n = 5 to approximate the integral $\int_{1}^{6} f(x) dx$.

c. Suppose f(x) is **decreasing**, then (fill in <, = or >) the estimated value in part (a) the value of $\int_{1}^{6} f(x) dx$ and the estimated value in part (b) the value of $\int_{1}^{6} f(x) dx$.

Do not go to the next page

Section 11.3

Integral Test

Suppose f(x) is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n = f(n)$. Then $a_2 + a_3 + a_4 \leq \int_1^4 f(x) dx \leq a_1 + a_2 + a_3$ In general, $\sum_{k=2}^n a_k \leq \int_1^n f(x) dx \leq \sum_{k=1}^{n-1} a_k$

The Integral Test

Suppose f is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n = f(n)$. Then

- If $\int_{1}^{\infty} f(x) dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is
- If $\int_{1}^{\infty} f(x) dx$ is **divergent**, then $\sum_{n=1}^{\infty} a_n$ is

When we use the Integral Test

• It is not necessary to start the series or the integral at n = 1. For example, in testing the

series
$$\sum_{n=4}^{\infty} \frac{1}{(n-3)^2}$$
 we can use $\int_4^{\infty} \frac{1}{(x-3)^2} dx$

• It is not necessary that f be always decreasing. What is important is that f be

ultimately decreasing. That is, decreasing on $[N,\infty)$ for some number N. Then $\sum_{n=N+1}^{\infty} a_n$ is

convergent, which means
$$\sum_{n=1}^{\infty} a_n$$
 is convergent.

We should **NOT** infer from the Integral Test that the sum of the series is equal to the value of the integral. In general,

$$\sum_{n=1}^{\infty} a_n \neq \int_1^{\infty} f(x) \, dx.$$

Useful Fact

- A continuous function is continuous at every point on its domain.
 - 1. Polynomials/Root functions/Trig functions/Exponential functions/Log functions are continuous functions.
 - 2. If f and g are continuous at a, then $\frac{f}{g}$ is continuous at a provided $g \neq 0$.
- If f'(x) < 0 on the interval (a,b), then f(x) is decreasing on the interval (a,b).

Example:

Use the <u>Integral Test</u> to determine the convergence or divergence of the series $\sum_{k=1}^{\infty} \frac{k}{k^2+1}$.

Proof of the p-series test Consider the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$. If p < 0, then $\lim_{n \to \infty} \frac{1}{n^p} = \infty$. If p = 0, then $\lim_{n \to \infty} \frac{1}{n^p} = 1$. In either case, $\lim_{n \to \infty} \frac{1}{n^p} \neq 0$, so the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges by the Divergence Test. If p > 0, then the function $f(x) = \frac{1}{x^p}$ is continuous, positive and decreasing on $[1, \infty)$. We showed on Friday (Sec 7.8 notes): $\int_{1}^{\infty} \frac{1}{x^p} dx$ converges if p > 1 and diverges if $p \le 1$. Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if 0 by the Integral Test.

p-series

The *p*-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is
convergent if ______ and divergent if ______.

Practice/Review:

Determine whether the series $\sum_{k=1}^{\infty} k^{-\frac{3}{4}}$ converges or diverges.

Practice/Review:

Determine whether the series $\sum_{k=4}^{\infty} \frac{1}{(k-1)^{\sqrt{2}}}$ converges or diverges.

<u>Practice/Review</u>: Which of the following is a convergent *p*-series?

A.)
$$\sum_{k=1}^{\infty} \frac{3}{2^k}$$
 B.) $\sum_{k=1}^{\infty} \frac{3}{\left(\frac{1}{2}\right)^k}$ C.) $\sum_{k=1}^{\infty} \frac{3}{k^2}$ D.) $\sum_{k=1}^{\infty} \frac{3}{k^{\frac{1}{2}}}$

Strategy Assume $\sum_{n=1}^{\infty} a_n$ is an infinite series with $a_n > 0$ for all n. 1. Check if it is a Geometric Series. No! Go to (2). Yes! If $r \ge 1$ or $r \le -1$, then the series diverges. If -1 < r < 1, then $S = \frac{a_1}{1-r}$. 2. Check if it is a *p*-Series. No! Go to (3). Yes! If $p \le 1$, then the series diverges. If p > 1, then the series converges. 3. Check if $\lim_{k \to \infty} a_k = 0$. (L'Hôpital's Rule is used if necessary) Yes! Then the test is inconclusive. Go to (4). No! Then the series diverges by the **Divergence Test**. 4. Check if it is a **Telescoping Series**. No! Go to (5). Yes! Evaluate S_n by cancelling middle terms (Partial Fraction Decomposition is used if necessary) and $S = \lim_{n \to \infty} S_n$. 5. Use the following Tests: The Limit Comparison Test / The Comparison Test. The Ratio Test. The Integral Test. (when a_n is "easy to integrate")

Practice: Determine whether the following series converge or diverge.

 $1.\sum_{n=2}^{\infty}\frac{1}{n(\ln n)}$

2.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

The Integral Test and Estimates of Sums

Extra practice:

$$3. \quad \sum_{n=1}^{\infty} \frac{1}{\left(\ln 2\right)^n}$$

$$4. \quad \sum_{n=1}^{\infty} \frac{2^n}{n+1}$$

$$5. \quad \sum_{n=1}^{\infty} \frac{2}{n\sqrt{n}}$$

$$6. \quad \sum_{n=1}^{\infty} \ln\left(\frac{n+1}{n}\right)$$