Example:
Suppose $f(x)$ is a continuous and positive function on $[1, \infty)$.
a. Use the Right Endpoint Rule with $n=5$ to approximate the integral $\int_{1}^{6} f(x) d x$.
b. Use the Left Endpoint Rule with $n=5$ to approximate the integral $\int_{1}^{6} f(x) d x$.
c. Suppose $f(x)$ is decreasing, then (fill in $<,=$ or $>$)
the estimated value in part (a) \qquad the value of $\int_{1}^{6} f(x) d x$ and the estimated value in part (b) \qquad the value of $\int_{1}^{6} f(x) d x$.

Do not go to the next page

Integral Test

Suppose $f(x)$ is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then

$$
a_{2}+a_{3}+a_{4} \quad \leq \quad \int_{1}^{4} f(x) d x \quad \leq \quad a_{1}+a_{2}+a_{3}
$$

In general,

$$
\sum_{k=2}^{n} a_{k} \leq \int_{1}^{n} f(x) d x \leq \sum_{k=1}^{n-1} a_{k}
$$

The Integral Test

Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then

- If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is
- If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is \qquad

When we use the Integral Test

- It is not necessary to start the series or the integral at $n=1$. For example, in testing the series $\sum_{n=4}^{\infty} \frac{1}{(n-3)^{2}}$ we can use $\int_{4}^{\infty} \frac{1}{(x-3)^{2}} d x$.
- It is not necessary that f be always decreasing. What is important is that f be ultimately decreasing. That is, decreasing on $[N, \infty)$ for some number N. Then $\sum_{n=N+1}^{\infty} a_{n}$ is convergent, which means $\sum_{n=1}^{\infty} a_{n}$ is convergent.
We should NOT infer from the Integral Test that the sum of the series is equal to the value of the integral. In general,

$$
\sum_{n=1}^{\infty} a_{n} \neq \int_{1}^{\infty} f(x) d x
$$

Useful Fact

- A continuous function is continuous at every point on its domain.

1. Polynomials/Root functions/Trig functions/Exponential functions/Log functions are continuous functions.
2. If f and g are continuous at a, then $\frac{f}{g}$ is continuous at a provided $g \neq 0$.

- If $f^{\prime}(x)<0$ on the interval (a, b), then $f(x)$ is decreasing on the interval (a, b).

Example:

Use the Integral Test to determine the convergence or divergence of the series $\sum_{k=1}^{\infty} \frac{k}{k^{2}+1}$.

Proof of the p-series test

Consider the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$.
If $p<0$, then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=\infty$. If $p=0$, then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=1$.
In either case, $\lim _{n \rightarrow \infty} \frac{1}{n^{p}} \neq 0$, so the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges by the Divergence Test.
If $p>0$, then the function $f(x)=\frac{1}{x^{p}}$ is continuous, positive and decreasing on $[1, \infty)$.
We showed on Friday (Sec 7.8 notes): $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges if $p>1$ and diverges if $p \leq 1$.
Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $0<p \leq 1$ by the Integral Test.
p-series
The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is
convergent if and divergent if

Practice/Review:
Determine whether the series $\sum_{k=1}^{\infty} k^{-\frac{3}{4}}$ converges or diverges.

Practice/Review:

Determine whether the series $\sum_{k=4}^{\infty} \frac{1}{(k-1)^{\sqrt{2}}}$ converges or diverges.

Practice/Review:
Which of the following is a convergent p-series?
A.) $\sum_{k=1}^{\infty} \frac{3}{2^{k}}$
B.) $\sum_{k=1}^{\infty} \frac{3}{\left(\frac{1}{2}\right)^{k}}$
C.) $\sum_{k=1}^{\infty} \frac{3}{k^{2}}$
D.) $\sum_{k=1}^{\infty} \frac{3}{k^{\frac{1}{2}}}$

Strategy
Assume $\sum_{n=1}^{\infty} a_{n}$ is an infinite series with $a_{n}>0$ for all n.

1. Check if it is a Geometric Series.

No! Go to (2).
Yes! If $r \geq 1$ or $r \leq-1$, then the series diverges. If $-1<r<1$, then $S=\frac{a_{1}}{1-r}$.
2. Check if it is a p-Series.

No! Go to (3).
Yes! If $p \leq 1$, then the series diverges. If $p>1$, then the series converges.
3. Check if $\lim _{k \rightarrow \infty} a_{k}=0$. (L'Hôpital's Rule is used if necessary)

Yes! Then the test is inconclusive. Go to (4).
No! Then the series diverges by the Divergence Test.
4. Check if it is a Telescoping Series.

No! Go to (5).
Yes! Evaluate S_{n} by cancelling middle terms (Partial Fraction Decomposition is used if necessary) and $S=\lim _{n \rightarrow \infty} S_{n}$.
5. Use the following Tests:

The Limit Comparison Test / The Comparison Test.
The Ratio Test.
The Integral Test. (when a_{n} is "easy to integrate")

Practice: Determine whether the following series converge or diverge.

1. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)}$
2. $\sum_{n=2}^{\infty} \frac{1}{\mathrm{n}(\ln n)^{2}}$

Extra practice:
3. $\sum_{n=1}^{\infty} \frac{1}{(\ln 2)^{n}}$
4. $\sum_{n=1}^{\infty} \frac{2^{n}}{n+1}$
5. $\sum_{n=1}^{\infty} \frac{2}{n \sqrt{n}}$
6. $\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right)$

