Infinite Series

If we add the terms of a sequence $\left\{a_{k}\right\}_{k=1}^{n}$, we get an expression of the form

$$
a_{1}+a_{2}+a_{3}+\quad+a_{n}
$$

which is called a series and is denoted by

$$
\sum_{k=1}^{n} a_{k} .
$$

Does it make sense to talk about the sum of infinitely many terms? We consider the partial sums

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3} \\
& S_{4}=a_{1}+a_{2}+a_{3}+a_{4}
\end{aligned}
$$

and, in general,

$$
S_{n}=a_{1}+a_{2}+a_{3}+\quad+a_{n}=\sum_{k=1}^{n} a_{k} .
$$

If the sequence of partial sums $\left\{S_{n}\right\}$ has a limit L, then the infinite series converges to that limit and we write

If the sequence of partial sums diverges, then the infinite series also diverges.

Summary (Notation)

Sequence converges or diverges?
Series converges or diverges?

An important example of an infinite series is the geometric series.

Recall

- Given a Geometric Sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$, if the ratio is r, then the n-th term can be expressed as $a_{n}=$ \qquad
- When , the sequence converges.

Geometric Series

Theorem Partial Sum of Geometric Series

Given a Geometric Sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$, if the ratio is r, then the sum of the first n term

$$
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+\mathrm{L}+a_{1} r^{n-2}+a_{1} r^{n-1}=
$$

$$
S_{n}=a_{1}+a_{1} r+a_{1} r^{2}+\mathrm{L}+a_{1} r^{n-2}+a_{1} r^{n-1}
$$

$r \cdot S_{n}=a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\mathrm{L}+a_{1} r^{n-1}+a_{1} r^{n}$

Therefore, $S_{n}-r \cdot S_{n}=a_{1}-a_{1} r^{n}$

$$
S_{n}=a_{1} \cdot \frac{1-r^{n}}{1-r}
$$

Furthermore,

Theorem Geometric Series

Let r and a be real numbers. If $|r|<1$, then $\sum_{k=1}^{\infty} a r^{k-1} \quad$. If $|r| \geq 1$, then the series diverges.

Caution

- When , the Geometric Sequence converges.
- When
\qquad
\qquad

Example:
Evaluate the geometric series $\sum_{k=2}^{\infty} \frac{2^{k}}{3^{k-1}}$ or state that it diverges.

Repeating Decimals

Example:

Write $2.3 \overline{17}=2.3171717 \mathrm{~L}$ as a geometric series and express its value as a fraction (a ratio of two integers).

Exercise: Useful Observations (see list of week 2 notes for solution)

- $0 . \overline{38}$
$1 . \overline{38}$
- $0.2 \overline{74}$
$1.2 \overline{74}$

