1. Question: Let $a_{k}=\frac{5 k^{2}-9}{k^{2}-4}$ for $k=3,4,5, \ldots$. The sequence $\left\{a_{k}\right\}_{k=3}^{\infty}$ converges to $L=\frac{5}{1}$. For each $\epsilon>0$, find a positive number N such that $\left|a_{k}-5\right|<\epsilon$ whenever $k>N$.

Example solution: I have written two possible final answers in boxes (on page 2 and page 4) that you should imitate (note their short length). Before you can arrive to a final answer, you need to do some scratch work on a separate piece of paper. I have written some suggestions for how to write your scratch work.

I described two options. Option 1 may be easier to follow at first because you would be doing step-by-step algebra. After you are comfortable with option 1, you can try option 2 - it is also doing algebra, but there is more room for creativity.

Suggested scratch work (this is scratch work, so do not submit this):

For all $k=3,4,5, \ldots$, we have

$$
\begin{aligned}
\left|a_{k}-L\right| & =\left|\frac{5 k^{2}-11}{k^{2}-4}-5\right| \\
& =\left|\frac{5 k^{2}-11-5\left(k^{2}-4\right)}{k^{2}-4}\right| \\
& =\left|\frac{-11+20}{k^{2}-4}\right| \\
& =\left|\frac{9}{k^{2}-4}\right| \\
& =\frac{9}{k^{2}-4} .
\end{aligned}
$$

From this point, I suggest you do one of two things (these are not the only options).
Option 1:
Think, I want to find k that is sufficiently large so that I get:

$$
\begin{aligned}
-\epsilon<a_{k}-L & <\epsilon \Leftrightarrow \\
-\epsilon<\frac{9}{k^{2}-4} & <\epsilon \Leftrightarrow \\
\frac{9}{k^{2}-4} & <\epsilon \Leftrightarrow \\
\frac{1}{k^{2}-4} & <\frac{1}{9} \epsilon \Leftrightarrow \\
9 \frac{1}{\epsilon} & <k^{2}-4 \text { because both sides are positive } \Leftrightarrow \\
\frac{9}{\epsilon}+4 & <k^{2} \Leftrightarrow \\
\sqrt{\frac{9}{\epsilon}+4} & <k .
\end{aligned}
$$

From the above computation, I can conclude that k would be large enough if $\sqrt{\frac{9}{\epsilon}+4}<k$. So I decide to choose my N to be $\sqrt{\frac{9}{\epsilon}+4}$ or larger. An example of a larger number would be $\sqrt{\frac{9}{\epsilon}+5}$.
(STARTING MY FINAL ANSWER (to submit) if I like option 1 better)
I choose $N=\sqrt{\frac{9}{\epsilon}+4}$ or $N=3$ (whichever is bigger). Then, as long as $k>N$, we have

$$
\begin{aligned}
\left|a_{k}-L\right| & =\left|\frac{5 k^{2}-11}{k^{2}-4}-5\right| \\
& =\left|\frac{5 k^{2}-11-5\left(k^{2}-4\right)}{k^{2}-4}\right| \\
& =\left|\frac{-11+20}{k^{2}-4}\right| \\
& =\left|\frac{9}{k^{2}-4}\right| \\
& =\frac{9}{k^{2}-4} \\
& <\frac{9}{N^{2}-4} \text { because } k>N \\
& =\frac{9}{\left(\frac{9}{\epsilon}+4\right)-4} \text { because I chose my } N \text { to be } N=\sqrt{\frac{9}{\epsilon}+4} \\
& =\epsilon .
\end{aligned}
$$

(THE END OF MY FINAL ANSWER for option 1)

Option 2: I first want to find a very simple-looking sequence which is bigger than $\left|a_{k}-L\right|$ for $k>C$, where C is some positive integer.
I want my simple-looking sequence to be

$$
\frac{\text { some positive number A }}{k^{2}} \text { or } \frac{\text { some positive number B }}{k} .
$$

You can guess some values or go through the following step-by-step process which guarantees you to find values that would work.

I want to find A and C so that the following is true:

$$
\begin{aligned}
\left|a_{k}-L\right| & <\frac{A}{k^{2}} \text { for } k>C \Leftrightarrow \\
\left|\frac{9}{k^{2}-4}\right| & <\frac{A}{k^{2}} \text { for } k \geq C \Leftrightarrow \\
\frac{9}{k^{2}-4} & <\frac{A}{k^{2}} \text { for } k \geq C \Leftrightarrow \\
\frac{9}{A} k^{2} & <\left(k^{2}-4\right) \text { for } k \geq C
\end{aligned}
$$

In order for above to be true, I see that $A\left(k^{2}-4\right)$ must be positive, so k^{2} must be bigger than 4. Hence, I should choose C to be larger than $\sqrt{4}$. I choose $C:=3$ (or I could have chosen $C:=100$).
Now I can choose my A. I need:

$$
\begin{array}{rlr}
\frac{9}{A} k^{2} & <\left(k^{2}-4\right) \text { for } k \geq 3 & \Leftrightarrow \\
4 & <k^{2}-\frac{9}{A} k^{2} \text { for } k \geq 3 & \Leftrightarrow \\
4 & <\left(1-\frac{9}{A}\right) k^{2} \text { for } k \geq 3 & \Leftrightarrow
\end{array}
$$

I see that the last equation will be true for all $k \geq 3$ if

$$
\begin{align*}
4 & <\left(1-\frac{9}{A}\right) 3^{2} & \Leftrightarrow \tag{1}\\
4 & <9-\frac{81}{A} & \Leftrightarrow \tag{2}\\
\frac{81}{A} & <9-4 & \Leftrightarrow \tag{3}\\
\frac{81}{5} & <A & \Leftrightarrow \tag{4}
\end{align*}
$$

is true. So I want to choose my A so that the inequality in line (4) is true. The inequality in line (4) is true as long as A is bigger than $81 / 7$. A convenient number larger than $81 / 5$ is $85 / 5=17$. I choose $A=17$.
All the work above get us:

$$
\begin{aligned}
\left|a_{k}-L\right| & =\left|\frac{9}{k^{2}-4}\right| \\
& <\frac{17}{k^{2}} \text { for } k \geq 3
\end{aligned}
$$

Think, I want to find k that is sufficiently large so that I get:

$$
\begin{aligned}
\frac{17}{k^{2}} & <\epsilon \Leftrightarrow \\
\frac{1}{k^{2}} & <\frac{1}{17} \epsilon \\
\frac{17}{\epsilon} & <k^{2} \text { because both sides are positive } \Leftrightarrow \\
\sqrt{\frac{17}{\epsilon}} & <k
\end{aligned}
$$

From the above computation, I can conclude that k would be large enough if $\sqrt{\frac{17}{\epsilon}}<k$.
So I decide to choose my N to be $\sqrt{\frac{17}{\epsilon}}$. I could have chosen a larger one, say, $\frac{5}{\sqrt{\epsilon}}$.
(STARTING MY FINAL ANSWER (to submit) if I like option 2 better) I choose $N=\sqrt{17 / \epsilon}$ or $N=3$ (whichever is bigger). Then, as long as $k>N$, we have

$$
\begin{aligned}
\left|a_{k}-L\right| & =\left|\frac{5 k^{2}-11}{k^{2}-4}-5\right| \\
& =\left|\frac{5 k^{2}-11-5\left(k^{2}-4\right)}{k^{2}-4}\right| \\
& =\left|\frac{-11+20}{k^{2}-4}\right| \\
& =\left|\frac{9}{k^{2}-4}\right| \\
& =\frac{9}{k^{2}-4} \\
& <\frac{17}{k^{2}} \text { because } k>N \geq 3 \\
& <\frac{17}{N^{2}} \text { because } k>N \\
& =\frac{17}{(17 / \epsilon)} \text { because I set my } N=\sqrt{17 / \epsilon} \\
& =\epsilon .
\end{aligned}
$$

(THE END OF MY FINAL ANSWER for option 2)

