Recall (fill in the blank, see middle of pg 761)

The *n*-th Taylor Polynomial centered at *a* is

Remainder in a Taylor Polynomial

Taylor polynomials provide good approximations to functions near a specific point, but how good are the approximations?

Let $R_n(x) = f(x) - T_n(x)$, then $R_n(x)$ is called the remainder of the Taylor series.

(Copy from pg 962) Theorem Taylor's Inequality

Suppose there exists a number M such that

$$\left|f^{(n+1)}(x)\right| \leq M \text{ for } |x-a| \leq d$$
,

then the remainder $R_n(x)$ of the Taylor series satisfies

$$\left|R_{n}\left(x\right)\right| \leq$$
 for

<u>Complete the Example</u>: Consider the function $f(x) = \sqrt[3]{x}$.

- a. Find the **Taylor polynomials of order 2** centered at x = 8 for f(x).
- b. How accurate is this approximation when $7 \le x \le 9$. Follow Sec 11.11 Example 1 pg 775.

Reading HW Taylor and Maclaurin Series

(Fill in each blank) Commonly used Maclaurin Series

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 for $-1 < x < 1$.
• $\frac{1}{1+x} =$ ________ for $\frac{1}{1+x} =$ ________ for $\frac{1}{1+x} =$ ________ for $\frac{1}{1+x} =$ ________ for $\frac{1}{1+x} = \frac{x^n}{n!} \frac{1}{n2^n} =$ ________ for $\frac{1}{1+x} = \frac{x^n}{n!} \frac{(-1)^n x^{2n+1}}{2n+1}$ for $-1 \le x \le 1$.
• $\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ for $-1 \le x \le 1$.
• $\sum_{n=0}^{\infty} \frac{x^n}{2n+1} =$ _______.
• $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for $-\infty < x < \infty$.
• $\sum_{n=0}^{\infty} \frac{1}{n!} =$ ______.
• $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ for $-\infty < x < \infty$.
• $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} =$ ______.
