Suppose for $|x-a|<R$, we have

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+c_{4}(x-a)^{4}+\ldots,
$$

then $f(a)=c_{0}$. We can differentiate both sides with respect to x to get

$$
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\ldots,
$$

then $f^{\prime}(a)=c_{1}$. Again, we have

$$
f^{\prime \prime}(x)=2 c_{2}+2 \times 3 c_{3}(x-a)+3 \times 4 c_{4}(x-a)^{2}+\ldots,
$$

then $f^{\prime \prime}(a)=2 c_{2}$. Apply the procedure one more time to obtain

$$
f^{\prime \prime \prime}(x)=2 \times 3 c_{3}+2 \times 3 \times 4 c_{4}(x-a)+\ldots,
$$

then $f^{\prime \prime \prime}(a)=2 \times 3 c_{3}$. By now you can see the pattern. If we continue to differentiate and substitute $x=a$, we obtain

$$
f^{(n)}(a)=n!c_{n} .
$$

That is

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

Example:
If $f(x)=\sum_{n=0}^{\infty} c_{n}(x-5)^{n}$ for all x, write a formula for c_{8}. Answer: follow Theorem $5(\operatorname{pg} 760)$.

Theorem (Sec 11.10 page 760)

If f has a power series representation at $x=a$, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad \text { for } \quad|x-a|<R
$$

then its coefficients are given by

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+
\end{aligned}
$$

The series is called the Taylor series of the function f at $x=a$. For the special case when $a=0$, the Taylor series becomes

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots
$$

This case arises frequently enough that it is given the special name Maclaurin series.
Example (check solution of Example 1, pg 760):
Find the Maclaurin series of the function $f(x)=e^{x}$ and its interval of convergence.

Recall the proof that e is irrational (from Sec 11.5, Alternating Series Estimate Theorem):
We needed the fact that $1 / e$ is equal to the series \qquad ?

Consider the partial sums

$$
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Notice that T_{n} is a polynomial of degree n called the n th-degree Taylor polynomial of f at $x=a$.

Example:
Consider the function $f(x)=\ln x$.
a. Find the Taylor polynomial of order $\mathbf{2}$ centered at $x=1$ for $f(x)=\ln x$.
b. Estimate the value of $\ln 1.05$.

