Areas in Polar Coordinates

Polar Coordinates

The area of the sector of a circle swept out by a 90 degree angle with radius r is ______.

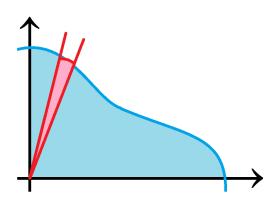
The area of the sector of a circle swept out by an angle θ with radius r is

The objective is to find the area of the region R bounded by the graph of $r = f(\theta)$ between the two rays $\theta = \alpha$ and $\theta = \beta$. Here, we assume that f is **continuous** and **nonnegative** on $[\alpha, \beta]$.

The area of R is found by slicing the region in slices.

Let $\Delta \theta_k = \theta_k - \theta_{k-1}$ and θ_k^* be any point of the interval $[\theta_{k-1}, \theta_k]$ for k = 1, 2, ..., n.

The k th slice is approximated by the sector of a circle swept out by an angle $\Delta \theta_k$ with radius $f(\theta_k^*)$.



Therefore, the area of the k th slice is approximately

To find the area of R, we sum the areas of these slices and take more sectors $(n \to \infty)$.

The exact area is given by

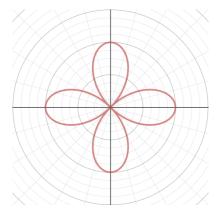
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{2} \left[f\left(\theta_{k}^{*}\right) \right]^{2} \Delta \theta_{k} = \underline{\hspace{2cm}}$$

Note the similarity between the formulas. It is helpful to think of the area as being swept out by a rotating ray through the pole that starts with angle α and ends with angle β .

Areas in Polar Coordinates

Example:

Find the area enclosed by one loop of the four-leaved rose $r = 4\cos 2\theta$.



Example:

Find the area of the region that lies inside the circle $r = 3\sin\theta$ and outside the cardioid $r = 1 + \sin\theta$.

