Polar Curves

The graph of a polar equation $r=f(\theta)$ consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

$r=4$

$r=2+2 \sin \theta$
Cardioid

$\theta=\frac{\pi}{6}$

Four-leaved Rose

Symmetry

When we sketch polar curves, it is sometimes helpful to take advantage of symmetry.

- The polar curve is symmetric about the polar axis if $>(r, \theta)$ and $(r,-\theta)$ are both on the curve $\underline{\underline{\text { OR }}}$
$>(r, \theta)$ and $(-r,-\theta+\pi)$ are both on the curve.
- The polar curve is symmetric about the vertical line $\theta=\frac{\pi}{2}$ if
$>(r, \theta)$ and $(-r,-\theta)$ are both on the curve $\underline{\underline{\mathrm{OR}}}$
$>(r, \theta)$ and $(r,-\theta+\pi)$ are both on the curve.
- The polar curve is symmetric about the pole if
$>(r, \theta)$ and $(-r, \theta)$ are both on the curve $\underline{\underline{\text { OR }}}$
$>(r, \theta)$ and $(r, \theta+\pi)$ are both on the curve.

Tangents to Polar Curve

To find a tangent line to a polar curve $r=f(\theta)$, we regard θ as a parameter and write its parametric equations as

$$
\left\{\begin{array} { l }
{ x = r \operatorname { c o s } \theta } \\
{ y = r \operatorname { s i n } \theta }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=f(\theta) \cos \theta \\
y=f(\theta) \sin \theta
\end{array}\right.\right.
$$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

Notice that if we are looking for tangent lines at the pole, then $r=0$. Thus the above equation simplifies to

Example:

Find the slope of the tangent line of the cardioid $r=1+\sin \theta$ when $\theta=\frac{\pi}{3}$.

