Section 10.3 Part 2

Polar Curves

The graph of a polar equation $r = f(\theta)$ consists of all points *P* that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

Section 10.3 Part 2

Symmetry

When we sketch polar curves, it is sometimes helpful to take advantage of symmetry.

- The polar curve is symmetric about the polar axis if

 (r,θ) and (r,-θ) are both on the curve <u>OR</u>
 (r,θ) and (-r,-θ+π) are both on the curve.
- The polar curve is symmetric about the vertical line $\theta = \frac{\pi}{2}$ if
 - → (r, θ) and $(-r, -\theta)$ are both on the curve **OR**
 - ► (r, θ) and $(r, -\theta + \pi)$ are both on the curve.
- The polar curve is symmetric about the pole if
 > (r,θ) and (-r,θ) are both on the curve OR
 > (r,θ) and (r,θ+π) are both on the curve.

Tangents to Polar Curve

To find a tangent line to a polar curve $r = f(\theta)$, we regard θ as a parameter and write its parametric equations as

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \implies \begin{cases} x = f(\theta) \cos \theta \\ y = f(\theta) \sin \theta \end{cases}$$

Then, using the method for finding slopes of parametric curves and the Product Rule, we have

Notice that if we are looking for tangent lines at the pole, then r = 0. Thus the above equation simplifies to

Section 10.3 Part 2

Example:

Find the slope of the tangent line of the cardioid $r = 1 + \sin \theta$ when $\theta = \frac{\pi}{3}$.

