Instruction: Fill in all blanks and examples. The last page is optional.

Arc Length

Arc Length

Copy Theorem 5, pg 653
If a curve Γ is described by the parametric equations $\left\{\begin{array}{l}x=h(t) \\ y=k(t)\end{array}, \alpha \leq t \leq \beta\right.$, where $h^{\prime}(t)$ and $k^{\prime}(t)$ are continuous on $[\alpha, \beta]$ and Γ is traversed exactly once as t increases from α to β, then the length of Γ is

$$
L=
$$

\qquad

Note: Γ is pronounced 'Gamma'.

Example:

Solve the question given in Example 4, pg 653.

Example:

Consider the parametric curve (cycloid) $\Gamma:\left\{\begin{array}{l}x=2(\theta-\sin \theta) \\ y=2(1-\cos \theta)\end{array}\right.$ where $0 \leq \theta \leq 2 \pi$. Find the length of Γ.

This is a special case of Example 5, pg 653-654

Surface Area

Surface Area

Copy Equation 6, pg 654.
If the curve Γ given by the parametric equations $\left\{\begin{array}{l}x=h(t) \\ y=k(t)\end{array}, \alpha \leq t \leq \beta\right.$, is rotated about the x-axis, where $h^{\prime}(t)$ and $k^{\prime}(t)$ are continuous and $k(t) \geq 0$, then the area of the resulting surface is given by

$$
S_{A}=
$$

\qquad

Example:

Solve the question given in Example 6, pg 654.

Example(Optional):
Consider the parametric curve (cycloid) $\Gamma:\left\{\begin{array}{l}x=2(\theta-\sin \theta) \\ y=2(1-\cos \theta)\end{array}\right.$ where $0 \leq \theta \leq 2 \pi$. Find the surface area formed by rotating Γ about the x-axis.

