Tangent Lines

Suppose h(t) and k(t) are differentiable functions of t. Consider the parametric curve

 $\left\{\begin{array}{l} x=h(t)\\ y=k(t) \end{array}\right., \text{ where } y \text{ is also a differentiable function of } x.$

First Derivative			
	$\frac{dy}{dx} =$	if	

- The curve has a **horizontal tangent** when
- The curve has a **vertical tangent** when

Example: Consider the parametric curve (**cycloid**) Γ : $\begin{cases} x = 2 (\theta - \sin \theta) \\ y = 2 (1 - \cos \theta) \end{cases} \text{ where } 0 \le \theta \le 2\pi.$

- (a) Find the slope of the tangent line at the point where $\theta = \frac{\pi}{3}$.
- (b) At what points is the tangent line horizontal?

Second Derivative

Example: Compute the second derivative for Γ whenever it's defined and use that to determine concavity of the curve.

Areas

Further suppose that the curve is traced out once by the parametric equations $\begin{cases} x = h(t) \\ y = k(t) \end{cases}, \\ \alpha \le t \le \beta, \text{ where } h(t) \text{ is monotonic and } k(t) \ge 0. \end{cases}$

Areas
$$A = \int_{a}^{b} y \, dx = ____.$$

Example: Consider the parametric curve (**cycloid**) Γ : $\begin{cases} x = 2(\theta - \sin \theta) \\ y = 2(1 - \cos \theta) \end{cases}$ where $0 \le \theta \le 2\pi$. Find the area enclosed by Γ and the *x*-axis.