Idea

Imagine a particle moving along a curve C. It is not always possible to describe a curve by an equation of the form $y=f(x)$. However, the x - and y-coordinates of the particle are functions of time and so we can write $x=f(t)$ and $y=g(t)$. Such a pair of equations is often a convenient way of describing a curve and gives rise to the following definition.

Suppose that x and y are both given as functions of a third variable t (called a parameter) by the equations

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}\right.
$$

(called parametric equations). Each value of t determines a point (x, y), which we can plot in a coordinate plane. As t varies, the point $(x, y)=(f(t), g(t))$ varies and traces out a curve, which we called a parametric curve.

Example:
Sketch and identify the curve defined by the parametric equations $\left\{\begin{array}{l}x=t^{2}-2 t \\ y=t+1\end{array}\right.$.

It appears that the curve traced out by the particle may be a \qquad . This can be confirmed by

Visualize with Desmos: https://www.desmos.com/calculator/jx82viodzf

Sometimes we restrict t to lie in a finite interval.
Example:
Sketch and identify the curve defined by the parametric equations $\left\{\begin{array}{l}x=t^{2}-2 t \\ y=t+1\end{array}\right.$ where $0 \leq t \leq 4$.

In general, the curve with parametric equations $\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}\right.$ where $a \leq t \leq b$ has initial point $(f(a), g(a))$ and terminal point $(f(b), g(b))$.

Example:

What curve is represented by the parametric equations $\left\{\begin{array}{l}x=\cos \theta \\ y=\sin \theta\end{array}\right.$ where $0 \leq \theta \leq 2 \pi$.

We distinguish between a curve, which is a set of points, and a parametric curve, in which the points are traced in a particular way.

