MATH 1152Q Fall 2017

NOTE: FIRST ATTEMPT WITHOUT LOOKING AT THE HINTS AND ANSWERS. Check your answer on Wolfram Alpha by typing "series representation for ..."

- 1. Suppose the radius of convergence of the power series $\sum_{n=0}^{\infty} c_n x^n$ is R. Use the **Test** of Your Choice to find the radius of convergence of the series.
 - a. $\sum_{n=1}^{\infty} n c_n x^{n-1}$
 - b. $\sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$

ANSWER: See Theorem 2 Sec 11.9 pg 754.

- 2. Find a power series representation for the function and determine the interval of convergence.
 - a. $\frac{5}{1-4x^2}$
 - b. $\frac{2}{3-x}$
 - c. $\frac{x}{9+x^2}$
 - d. $\frac{x}{2x^2+1}$

GUIDE FOR a,b,c,d: Follow Examples 1,2,3 Sec 11.9.

- e. $\frac{3}{x^2 x 2}$
- $f. \quad \frac{x+2}{2x^2-x-1}$

GUIDE FOR e, f: First use partial fraction. Compute the two power series using the same method as Example 2. Then combine the two series.

g.
$$\frac{x}{(1+4x)^2}$$

ANSWER:

Step i: Apply Theorem 2 (term-by-term differentiation) to get the series for $-4/(1+4x)^2$.

Step ii: Then multiply the series by x/(-4).

Step iii: Radius of convergence is R = 1/4.

h.
$$\left(\frac{x}{2-x}\right)^3$$

ANSWER:

Step i: To get $1/(2-x)^2$, follow Example 5.

Step ii: Apply another term-by-term differentiation to get $1/(2-x)^3$.

Step iii: Multiply this series by $(x^3)/2$.

Step iv: Radius of converge is R = 2.

i.
$$\frac{1+x}{\left(1-x\right)^2}$$

ANSWER:

Step i: To get $1/(1-x)^2$, use Example 5.

Step ii: To get $x/(1-x)^2$, multiply the series by x.

Step iii: Combine them, then shift some indices to turn them into just one series.

Step iv: Radius of convergence is R = 1.

3. Evaluate the indefinite integral as a power series. What is the radius of convergence?

a.
$$\int \frac{x}{1+x^3} dx$$

ANSWER:

Step i: First follow Example 8a (top half) to get the series for $1/(1+x^3)$.

Step ii: Then multiply your series by x.

Step iii: Then apply Theorem 2 (term-by-term integration).

Step iv: Radius of convergence is the same as in Example 8a, R = 1.

b.
$$\int x^2 \ln(1+x) dx$$

ANSWER:

Step i: First follow Example 6 to get the series for ln(1+x).

Step ii: Then multiply your series by x^2 .

Step iii: Then apply Theorem 2 (term-by-term integration).

Step iv: Radius of convergence is the same as in Example 6, R = 1.

c.
$$\int \frac{\tan^{-1} x}{x} dx$$

ANSWER:

Step i: First follow Example 7 to get the series for arctan(x).

Step ii: Then multiply your series by 1/x.

Step iii: Then apply Theorem 2 (term-by-term integration).

Step iv: Radius of convergence is the same as in Example 7, R = 1.

- 4. Consider the geometric series $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for |x| < 1.
 - a. Find the sum of the series $\sum_{n=1}^{\infty} nx^n$ for |x| < 1.

ANSWER:

Step i: Use Theorem 2 (term-by-term differentiation) to get $1/(1-x)^2$

Step ii: Then multiply by x. Step iii: Answer is $x/(1-x)^2$

b. Find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^n}$.

ANSWER:

Step i: Put x = 1/2 into the function for part (a).

Step ii: You get $(1/2)/(1 - 1/2)^2 = 2$.

c. Find the sum of the series $\sum_{n=1}^{\infty} n^2 x^n$ for |x| < 1.

ANSWER: Start with the answer for part (a). Use Theorem 2 (term-by-term differentiation), then multiply by x.

d. Find the sum of the series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$.

ANSWER: Put x = 1/2 into the function for part (d).

- 5. It is known that $\cos x$ has a power series representation $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$.
 - a. Find a power series representation for $\cos \sqrt{x}$.

ANSWER: Use Theorem (composition) with $h(x) = \operatorname{sqrt}(x)$ and $f(x) = \cos x$. The answer should look like the same series but you replace $x^{(2n)}$ with $x^{(n)}$.

b. Find a power series representation for $\int \cos \sqrt{x} \ dx$.

GUIDE: Apply Theorem 2 (term-by-term integration).

c. Assume that the series you found in part (b) converges for all $x \ge 0$. Use your answer in part (b) to determine a series that represents $\int_0^1 \cos \sqrt{x} \ dx$.

GUIDE: Follow Example 8b(top half). The answer should be a series, not an approximation.

d. If the first two non-zero terms of the series are used to estimate the value of the definite integral from part (c), provide a bound on the error of this estimate.

GUIDE: Use Alternating Series Theorem. Follow Example 8b(bottom half).

- 6. It is known that e^x has a power series representation $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ for $-\infty < x < \infty$.
 - a. Find a power series representation for xe^x .

ANSWER: Multiply the given series by the number x. Answer is sum from n=0 of $x^{(1+n)/n}$!

b. Find a power series representation for $\frac{d}{dx}(xe^x)$.

ANSWER: Take the power series from part (a) and apply Theorem 2 (term-by-term differentiation). Answer is sum from n=0 of (n+1) $x^n/n!$

c. Evaluate
$$\sum_{n=0}^{\infty} \frac{(n+1)(-1)^n}{n!}.$$

ANSWER:

Step i: Evaluate the function for derivative d/dx (x e^x) using product rule - you should get $(x+1)e^x$.

Step ii: Due to the power series of part (b), we know that this derivative when x = -1 is the sum of the given series (part c).

Step iii: Final answer is $((-1) + 1) e^{(-1)} = 0$.

d. Find a power series representation for $\int xe^x dx$.

ANSWER: Use the series from part (a) and apply Theorem 2 (term-by-term integration).

Answer is sum from n = 0 of $x^{(n+2)}/(n! (n+2))$.

e. Evaluate
$$\sum_{n=1}^{\infty} \frac{1}{n!(n+2)}.$$

ANSWER:

Step i: Evaluate the function for the antiderivative for the function $x e^x$ using integration by parts - you should get $(x-1) e^x + C$.

Step ii: Due to part (d), we know that this antiderivative when x = 1 is the sum of the series (part e) but starting at n=0, so the sum of the series (part e) starting at n=0 is equal to $(1 - 1)e^2 = 0$.

Step iii: But the given series starts at n = 1, so we have to subtract the term where n = 0. The term when n = 0 is 1/(0!(0+2)) = 1/(1.2) = 1/2.

So the final answer is minus 1/2.