Name : \qquad
NOTE 1: Directions/hints/answers are already available on the course website. First attempt without looking at the hints and answers.
NOTE 2: You can type 'series representation of ...' on Wolfram|Alpha.

1. Suppose the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is R. Use the $\underline{\underline{\text { Test of }}}$ Your Choice to find the radius of convergence of the series.
a. $\sum_{n=1}^{\infty} n c_{n} x^{n-1}$
b. $\sum_{n=0}^{\infty} \frac{c_{n}}{n+1} x^{n+1}$
2. Find a power series representation for the function and determine the interval of convergence. Pick just ONE of a,b,c, or d. Pick the one that you think will be difficult to do under time pressure (for example, on a test).
a. $\frac{5}{1-4 x^{2}}$
b. $\frac{2}{3-x}$
c. $\frac{x}{9+x^{2}}$
d. $\frac{x}{2 x^{2}+1}$

Do just ONE of e or f.
e. $\frac{3}{x^{2}-x-2}$
f. $\frac{x+2}{2 x^{2}-x-1}$

Do just ONE of \mathbf{g}, h, or i. Pick one that you think will be most difficult.
g. $\frac{x}{(1+4 x)^{2}}$
h. $\left(\frac{x}{2-x}\right)^{3}$
i. $\frac{1+x}{(1-x)^{2}}$
3. Evaluate the indefinite integral as a power series. What is the radius of convergence?

Do just TWO of the three options.
a. $\int \frac{x}{1+x^{3}} d x$
b. $\int x^{2} \ln (1+x) d x$
c. $\int \frac{\tan ^{-1} x}{x} d x$
4. Consider the geometric series $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ for $|x|<1$.

Do at least (a) and (b).
a. Find the sum of the series $\sum_{n=1}^{\infty} n x^{n}$ for $|x|<1$.
b. Find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.
c. Find the sum of the series $\sum_{n=1}^{\infty} n^{2} x^{n}$ for $|x|<1$.
d. Find the sum of the series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$.
5. It is known that $\cos x$ has a series representation $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$. Do all parts.
a. Find a power series representation for $\cos \sqrt{x}$.
b. Find a power series representation for $\int \cos \sqrt{x} d x$. Hint: Use part (b).
(continued)
(continued)
c. Assume that the series you found in part (b) converges for all $x \geq 0$. Use your answer in part (b) to determine a series that represents $\int_{0}^{1} \cos \sqrt{x} d x$.
d. If the first two non-zero terms of the series are used to estimate the value of the definite integral from part (c), provide a bound on the error of this estimate.
6. It is known that e^{x} has a series representation $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for all real numbers x . Do all parts.
a. Find a power series representation for $x e^{x}$.
b. Find a power series representation for $\frac{d}{d x}\left(x e^{x}\right)$. Hint: Use part (a).
c. Evaluate $\sum_{n=0}^{\infty} \frac{(n+1)(-1)^{n}}{n!}$. Hint: Use part (b).
(continued)
(continued)
d. Find a power series representation for $\int x e^{x} d x$. Hint: Use part (a).
e. Evaluate $\sum_{n=1}^{\infty} \frac{1}{n!(n+2)}$. Hint: Use part (d).

