Name :
The final answers are given for each problem. Your job is to provide the explanations. You may need extra space - you can attach your own paper.

1. Find the interval and radius of convergence for the power series.

Choose the most challenging series from this page.
a. $\sum_{n=0}^{\infty} \frac{(-2)^{n}(x+3)^{n}}{3^{n+1}}$

Answer: Radius of convergence is $\mathrm{R}=3 / 2$ and interval of convergence is $\mathrm{I}=(-9 / 2,-3 / 2)$ both open.
b. $\sum_{n=1}^{\infty}(-1)^{n} n x^{n}$

Answer: Radius of convergence is $R=1$ and interval of convergence is $I=(-1,1)$ both open.
c. $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x-3)^{n}}{\sqrt{n}}$

Answer: Radius of convergence is $R=1$ and interval of convergence is $I=($ open $)(2,4]$ (closed)

Choose the most challenging series from this page.
d. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{7^{n}(n+1)}$

Answer: Radius of convergence is $\mathrm{R}=7$ and interval of convergence is $\mathrm{I}=$ (open) ($-7,7$] (closed)
e. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2} x^{n}}{2^{n}}$

Answer: Radius of convergence is $R=2$ and interval of convergence is $I=(-2,2)$ both open
f. $\sum_{n=1}^{\infty} \frac{10^{n} x^{n}}{n^{3}}$

Answer: Radius of convergence is $R=1 / 10$ and interval of convergence is $I=[-1 / 10,1 / 10]$ both closed

Choose the most challenging series from this page.

g. $\sum_{n=0}^{\infty} \frac{n!(x-2)^{n}}{3^{n}}$

Answer: Radius of convergence is $R=0$ and interval of convergence is $I=\{2\}$
h. $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{4^{n} \ln n}$

Answer: Radius of convergence is $R=4$ and interval of convergence is $I=$ open $(-4,4]$ closed i. $\quad \sum_{n=1}^{\infty} \frac{n^{20} x^{n}}{(2 n+1)!}$

Answer: interval of convergence is all real numbers

Choose the most challenging power series from this page.

j. $\quad \sum_{n=0}^{\infty} \frac{(x-2)^{n}}{n^{2}+1}$

Answer: Radius of convergence is $\mathrm{R}=1$ and interval of convergence is $\mathrm{I}=$ closed $[1,3]$ closed

$$
\text { k. } \quad \sum_{n=1}^{\infty} n!(2 x-1)^{n}
$$

Answer: Radius of convergence is $\mathrm{R}=0$ and interval of convergence is $\mathrm{I}=\{1 / 2\}$

1. $\sum_{n=1}^{\infty} \frac{x^{2 n}}{n(\ln n)^{2}}$ There is a typo. The Starting point should be $\mathrm{N}=2$. Otherwise you would divide by zero for n=2

Answer: Radius of convergence is $R=1$ and the interval of convergence is $I=[-1,1]$ both closed
2. Find the radius of the convergence and the interval of convergence for the series

$$
\sum_{n=2}^{\infty} \frac{1}{n \ln n}\left(\frac{x}{2}-1\right)^{n}
$$

Answer: radius of convergence is $\mathrm{R}=2$ and the interval of convergence is closed $[0,4)$ open
3. The following functions can be represented as power series. Find the interval of convergence for the power series. Do both series.
a. $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$

Answer: the interval of convergence is $(-1,1)$
b. $\quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

Answer: all real numbers

Choose a series from this page.
c. $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$

Answer: all real numbers
d. $\quad \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$

Answer: all real numbers

Do both series.
e. $\quad \arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$

Answer: the interval of convergence is $[-1,1]$ both closed.

$$
\text { f. } \quad \ln (1+x)=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}
$$

Answer: the interval of convergence is open ($-1,1$] closed.

