1. Consider the geometric series

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \text { for }|x|<1
$$

a. Find a power series representation for $\frac{1}{1+x^{2}}$ and give the interval of convergence (from Week 8 Mon reading homework).
b. Find a power series representation for $\tan ^{-1} x$ and give the interval of convergence. (Hint: use term-by-term differentiation or integration).
c. Evaluate the infinite series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$. Hint: use part (b).

Solution:
a. Use Theorem (composition), follow Example 1, pg 753.
b. Use Theorem (term-by-term integration), follow Example 7, pg 756 to determine the radius of convergence, $\mathrm{R}=1$. To determine the interval of convergence, check the endpoints $x=-1$ and $x=1$. Using the Alternating Series Test for both endpoints, you get that the series converges when $x=-1$ and also when $x=1$. Hence the interval of convergence is $[-1,1]$.
c. You answer to part (b) is a power series which converges to the function $\arctan (\mathrm{x})$ for x in the interval $[-1,1]$. To answer to part (c), simply "plug in" $x=1$ into the series from part (b) which is equal $\arctan (1)=\mathrm{pi} / 4$.

