(WebAssign 9.1 differential equations)

1. For what values of k does the function $y=\cos (k t)$ satisfy the differential equation $4 y^{\prime \prime}=$ $-9 y$?
2. Circle all functions which are solutions to $4 y^{\prime \prime}=-9 y$. (If none or all, state so).
(a) $y=-\cos \left(\frac{3 t}{2}\right)$

Answer: Yes
(b) $y=\cos \left(\frac{3 t}{2}\right)+1$

Answer: No
(c) $y=\sin \left(\frac{3 t}{2}\right)$
(d) $y=\sin \left(\frac{3 t}{2}\right)+\cos \left(\frac{3 t}{2}\right)$
3. True or false? Every member of the family of functions $y=\frac{4 \ln (x)+C}{x}$ is a solution of the differential equation

$$
x^{2} y^{\prime}+x y=4
$$

Show work.
4. Find a solution of the differential equation that satisfies the initial condition $y(1)=2$. Answer $y=\frac{4 \ln (x)+2}{x}$.
5. Find a solution of the differential equation that satisfies the initial condition $y(2)=1$.
6. Find a solution of the differential equation that satisfies the initial condition $y(3)=1$.
7. What can you say about a solution of the differential equation $y^{\prime}=-\frac{1}{2} y^{2} j u s t$ by looking at the differential equation? Circle all possibilities.
(a) The function y must be equal to 0 on any interval on which it is defined. Answer: no.
(b) The function y must be strictly increasing on any interval on which it is defined.
(c) The function y must be increasing (or equal to 0) on any interval on which it is defined.
(d) The function y must be decreasing (or equal to 0) on any interval on which it is defined.
(e) The function y must be strictly decreasing on any interval on which it is defined.
8. Verify that all members of the family $y=\frac{2}{x+C}$ are solutions of the differential equation $y^{\prime}=-\frac{1}{2} y^{2}$.
9. Write a solution of the differential equation $y^{\prime}=-\frac{1}{2} y^{2}$ that is not a member of the family $y=\frac{2}{x+C}$. Hint: See Problem 2a and 3a on In-class 9.1 Worksheet https://egunawan.github. io/fal117/notes/ $/ 132999-1$ _nodel ing_ with_differential_equations.pdf
10. Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{2} y^{2} \quad y(0)=0.1$

Answer: $\frac{2}{x+20}$
11. Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{4} y^{2} \quad y(0)=0.2$.

Hint: the solution will be in the form of $\frac{4}{x+K}$
12. Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{3} y^{2} \quad y(0)=0.5$ Hint: the solution will be in the form of $\frac{3}{x+K}$
13. Find a solution of the initial-value problem. $y^{\prime}=-\frac{1}{6} y^{2} \quad y(0)=0.5$

Hint: the solution will be in the form of $\frac{6}{x+K}$
14. A population is modeled by the differential equation

$$
\frac{d P}{d t}=1.1 P\left(1-\frac{P}{4000}\right)
$$

(a) For what values of P is the population increasing?

Answer: $(0,4000)$. Explanation: You need $1-P / 4000>0$ and $P>0$.
(b) For what values of P is the population decreasing?
(c) What are the equilibrium solutions? Hint: You need $d P / d t=0$.
15. A function $y(t)$ satisfies the differential equation

$$
\frac{d y}{d t}=y^{4}-8 y^{3}+15 y^{2}
$$

(a) What are the constant solutions of the equation?

Answer: $y=0, y=3, y=5$
(b) Sketch the polynomial $t^{4}-8 t^{3}+15 t^{2}$. In particular, mark the x-intercepts.
(c) For what values of y is y increasing?
(d) For what values of y is y decreasing?

Answer: $(3,5)$

