9.1 Modeling with Differential Equations

Differential equation (DE). An equation that contains an unknown function and some of its derivatives. Some examples of DE include $\frac{d y}{d x}=4 x, \frac{d y}{d x}=2 x^{2}-4$ and $\frac{d^{2} y}{d x^{2}}=5 x-1$. The order of a DE is the order of the highest order derivative that appears in the equation.

For example, $\frac{d y}{d x}=4 x$ is a first order DE while $\frac{d^{2} y}{d x^{2}}=5 x-1$ is a second order DE.

1. Example: Which of the following functions are solutions to the differential equation $y^{\prime \prime}+y=\sin x$?
(a) $y=\sin x$
(b) $y=\cos x$
(c) $y=\frac{1}{2} x \sin x$
(d) $y=-\frac{1}{2} x \cos x$

Thinking about the problem:
How should I approach this problem? Have I seen a problem like this before? If so, how did I approach it?

I notice that this problem is asking me to check if different functions are solutions to the differential equation $y^{\prime \prime}+y=\sin x$. So first, I will have to find y and $y^{\prime \prime}$ for each of the following functions.
(a) $y=\sin x$
(b) $y=\cos x$
(c) $y=\frac{1}{2} x \sin x$
(d) $y=-\frac{1}{2} x \cos x$.

I will need to find $y^{\prime \prime}$ and plug both y and $y^{\prime \prime}$ into the equation $y^{\prime \prime}+y=\sin x$ to determine if it is a solution or not.

Doing the problem:
First, I find y in each of the functions is
(a) $y=\sin x$
(b) $y=\cos x$
(c) $y=\frac{1}{2} x \sin x$
(d) $y=-\frac{1}{2} x \cos x$.

Next, I find $y^{\prime \prime}$ in each of the functions is
(a) $y^{\prime \prime}=-\sin x$
(b) $y^{\prime \prime}=-\cos x$
(c) $y^{\prime \prime}=\cos x-\frac{1}{2} x \sin x$
(d) $y^{\prime \prime}=\sin x+\frac{1}{2} x \cos x$.

So $y^{\prime \prime}+y$ in each function is
(a) $-\sin x+\sin x=0$
(b) $-\cos x+\cos x=0$
(c) $y=\cos x-\frac{1}{2} x \sin x+\frac{1}{2} x \sin x=\cos x$
(d) $y=\sin x+\frac{1}{2} x \cos x-\frac{1}{2} x \cos x=\sin x$.

So the only solution to $y^{\prime \prime}+y=\sin x$ is the function (d) $y=-\frac{1}{2} x \cos x$.

Solutions should show all of your work, not just a single final answer.
2. We consider the differential equation $\frac{d y}{d t}=1-2 y$.
(a) Find all constant solutions (Hint: Check functions $y=K$ for constant K. What does K need to be for the function to be a solution to the differential equation?).
(b) Show every function of the form $y(t)=\frac{1}{2}+K e^{-2 t}$, where K is a constant, is a solution.
3. We consider the differential equation $\frac{d y}{d x}=x y$.
(a) Find all constant solutions.
(b) Show every function of the form $y(x)=K e^{x^{2} / 2}$, where K is a constant, is a solution.
4. T/F (with justification)

Every differential equation has a constant solution.

