7.3 Trigonometric Substitution

In each of the following trigonometric substitution problems, draw a triangle and label an angle and all three sides corresponding to the trigonometric substitution you select.
Table of Trigonometric Substitution

Expression	Substitution	Identity
$\sqrt{a^{2}-x^{2}}$	$x=a \sin \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \quad$ OR $\quad \mathrm{Q}$ Q $\cos \theta$	$1-\sin ^{2} \theta=\cos ^{2} \theta$
$\sqrt{a^{2}+x^{2}}$	$x=a \tan \theta,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \quad \text { OR }=a \cot \theta$	$1+\tan ^{2} \theta=\sec ^{2} \theta$
$\sqrt{x^{2}-a^{2}}$	$\begin{aligned} & x=a \sec \theta, 0 \leq \theta<\frac{\pi}{2} \text { or } \pi \leq \theta<\frac{3 \pi}{2} \\ & \text { OR } \\ & X=a \csc \theta \end{aligned}$	$1+\tan ^{2} \theta=\sec ^{2} \theta$

1. Example: Evaluate $\int \frac{d x}{\sqrt{9-x^{2}}}$.

Thinking about the problem:

What technique of integration should I use to evaluate the integral and why? Have I seen a problem similar to this one before? If so, which technique did I use?

I know that I need to evaluate an indefinite integral, so I know my answer will include $+C$. To determine which technique to use, I will focus on the integrand, i.e., $\frac{1}{\sqrt{9-x^{2}}}$. I think I will use the technique of Trigonometric Substitution to evaluate this integral. I noticed that the denominator of the integrand is $\sqrt{9-x^{2}}$, which is a form found in the Table of Trigonometric Substitution. I look at the table and find that the substitution

I want to use is $x=3 \sin \theta$. I can then simplify my integral with this substitution and integrate.

Doing the problem:

I will evaluate $\int \frac{d x}{\sqrt{9-x^{2}}}$ using the technique of Trigonometric Substitution. I will let $x=3 \sin \theta$ and $d x=3 \cos \theta d \theta$. Then I can draw a triangle using my choice of substitution and find the following picture:

So the new integral is

$$
\begin{aligned}
\int \frac{d x}{\sqrt{9-x^{2}}} & =\int \frac{3 \cos \theta d \theta}{\sqrt{9-(3 \sin \theta)^{2}}} \\
& =\int \frac{3 \cos \theta d \theta}{\sqrt{9\left(1-\sin ^{2} \theta\right)}} \\
& =\int \frac{3 \cos \theta d \theta}{\sqrt{9 \cos ^{2} \theta}} \\
& =\int \frac{3 \cos \theta d \theta}{3 \cos \theta} \\
& =\int d \theta \\
& =\theta+C
\end{aligned}
$$

Since the substitution we used was $x=3 \sin \theta$, then $\theta=\sin ^{-1}\left(\frac{x}{3}\right)$. So

$$
\int \frac{d x}{\sqrt{9-x^{2}}}=\sin ^{-1}\left(\frac{x}{3}\right)+C
$$

Solutions should show all of your work, not just a single final answer.
2. Evaluate $\int \frac{d x}{\left(9+x^{2}\right)^{3 / 2}}$.
(a) State the technique of integration you would use to evaluate the integral.
(b) Which substitution would you use for x ? What would $d x$ be?
(c) Based on the choice for x, fill in the triangle:

(d) Using (b), write the new integral.
(e) Evaluate (optional - do at home): Answer: $\frac{1}{9} \frac{x}{\sqrt{3^{2}+x^{2}}}+$ Constant
3. Evaluate $\int \frac{\sqrt{x^{2}-9}}{x^{3}} d x$.
(a) State the technique of integration you would use to evaluate the integral.
(b) Which substitution would you use for x ? What would $d x$ be?
(c) Based on the choice for x, fill in the triangle:

(d) Using (b), write the new integral.
(e) Using (c) and (d), evaluate the integral. (optional -wort at home)

Ans: $\frac{1}{6}\left[\operatorname{arcsec}\left(\frac{x}{3}\right)-\frac{\sqrt{x^{2}-9}}{x^{2}} \cdot 3\right]$
4. Evaluate $\int_{0}^{3} \frac{x^{2}}{\sqrt{9-x^{2}}} d x$. (Hint: When you make a trigonometric substitution, include the bounds of integration in the substitution.)
5. T/F (with justification): To evaluate $\int \frac{d x}{x^{2} \sqrt{x^{2}+2}}$ by trigonometric substitution, use $x=2 \tan \theta$.

