7.2 Trigonometric Integrals

Trigonometric Identities and Formulas.

1. $\sin ^{2} \theta+\cos ^{2} \theta=1$
2. $\tan ^{2} \theta+1=\sec ^{2} \theta$
3. $\sin 2 \theta=2 \sin \theta \cos \theta$
4. $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
5. $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$
6. $\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$
7. Example: Evaluate $\int_{0}^{\pi} \sin ^{3}(5 x) d x$.

Thinking about the problem:

What technique of integration should I use to evaluate the integral and why? Have I seen a problem similar to this one before? If so, which technique did I use?

I know that I need to evaluate a definite integral so my result should result in a number. To determine which technique to use, I will focus on the integrand, i.e., $\sin ^{3}(5 x)$. In this case, I cannot directly integrate $\int_{0}^{\pi} \sin ^{3}(5 x) d x$, so I will consider the Trigonometric Identities. I will need to use an identity which involves powers of $\sin (x)$. I think I will use the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$, so $\sin ^{2} \theta=1-\cos ^{2} \theta$. Then I can find $\sin ^{3}(5 x)=$ $\sin (5 x) \sin ^{2}(5 x)=\sin (5 x)\left(1-\cos ^{2}(5 x)\right)$. Since $\sin ^{3}(5 x)=\sin (5 x)\left(1-\cos ^{2}(5 x)\right)$, I find that $\int_{0}^{\pi} \sin ^{3}(5 x) d x=\int_{0}^{\pi} \sin (5 x)\left(1-\cos ^{2}(5 x)\right) d x$. If this new integral is more difficult to solve than my original integral, then I probably made a mistake in my choice of the identity to use. However, I see that I can integrate $\int_{0}^{\pi} \sin (5 x)\left(1-\cos ^{2}(5 x)\right) d x$ using the technique of substitution, which is how I will proceed to evaluate the integral.

Doing the problem:

The problem asks to evaluate the integral. I note that I can use the identity $\sin ^{2} \theta+$ $\cos ^{2} \theta=1$ and find

$$
\int_{0}^{\pi} \sin ^{3}(5 x) d x=\int_{0}^{\pi} \sin (5 x)\left(1-\cos ^{2}(5 x)\right) d x
$$

Then I use the substitution $u=\cos (5 x)$ so that $d u=-5 \sin (5 x) d x$. I also evaluate the bounds $\cos (5 \cdot 0)=1$ and $\cos (5 \cdot \pi)=-1$ to find the new integral

$$
\begin{aligned}
\int_{0}^{\pi} \sin (5 x)\left(1-\cos ^{2}(5 x)\right) d x & =\int_{1}^{-1} \sin (5 x)\left(1-u^{2}\right) \frac{d u}{-5 \sin (5 x)} \\
& =-\frac{1}{5} \int_{1}^{-1} 1-u^{2} d u \\
& =\frac{1}{5} \int_{-1}^{1} 1-u^{2} d u \\
& =\frac{1}{5}\left[u-\frac{u^{3}}{3}\right]_{-1}^{1} \\
& =\frac{1}{5}\left(\left[1-\frac{1}{3}\right]-\left[-1-\frac{-1}{3}\right]\right) \\
& =\frac{1}{5}\left(2-\frac{2}{3}\right) \\
& =\frac{4}{15}
\end{aligned}
$$

Solutions should show all of your work, not just a single final answer.
2. Identify the trig identities to simplify the following integrands:
(a) $\int \sin ^{2} x d x$
(b) $\int \cos ^{2} x d x$
3. Evaluate $\int \sin ^{2} x \cos ^{2} x d x$. (Hint: Look at the exponents. Are they the same?)
(a) Which identity would you use to simplify the integrand?
(b) Using part (a), simplify the integrand.
(c) Evaluate $\int \sin ^{2} x \cos ^{2} x d x$ using the integrand found in part (b).
4. Evaluate $\int_{0}^{\pi} \cos ^{3} x d x$
5. Evaluate $\int \cos x \sin ^{2} x d x$. (Hint: There may be more than one technique to evaluate this integral.)
(a) State the techniques you could use to evaluate the integral.
(b) Choose the most efficient technique and evaluate $\int \cos x \sin ^{2} x d x$.
6. T/F (with justification): The value of $\int_{-\pi}^{\pi} \sin ^{9} x d x$ is 0 .

